The University Interscholastic League
 Number Sense Test • HS SAC • 2009

Contestant's Number		Final	
		2nd	
		1st	
Read directions carefuily before beginning test	DO NOT UNFOLD THIS SHEET UNTIL TOLD TO BEGIN		Score

Directions: Do not turn this page until the person conducting this test gives the signal to begin. This is a ten-minute test. There are 80 problems. Solve accurately and quickly as many as you can in the order in which they appear. ALL PROBLEMS ARE TO BE SOLVED MENTALLY. Make no calculations with paper and pencil. Write only the answer in the space provided at the end of each problem. Problems marked with a (*) require approximate integral answers; any answer to a starred problem that is within five percent of the exact answer will be scored correct; all other problems require exact answers.

The person conducting this contest should explain these directions to the contestants.

STOP -- WAIT FOR SIGNAL!

(1) $2010+2009=$
(2) $2009 \times 11=$ \qquad
(3) $9002-2010=$ \qquad
(4) $2010 \div 25=$ \qquad (decimal)
(5) $\frac{3}{5} \div \frac{8}{15}=$ \qquad
(6) $4 \times 2 \frac{2}{3}=$ \qquad (mixed number)
(7) $16 \%=$ \qquad (proper fraction)
(8) $3+(4 \times 5-6) \div 7=$
(9) $\frac{3}{8}=$ \qquad (decimal)
*(10) $2009+2010+2910=$ \qquad
(11) $12^{2}=$ \qquad
(12) $12^{3}=$ \qquad
(13) 24 is what $\%$ of 60 ? \qquad \%
(14) $32 \times 23=$ \qquad
(15) $1+3+5+\ldots+23=$ \qquad
(16) Which is larger, $\frac{11}{13}$ or $\frac{13}{16}$? \qquad
(17) $2010 \div 9$ has a remainder of \qquad
(18) MCDLXIV $=$ \qquad (Arabic Number)
(19) $\frac{1}{4}$ ton is equivalent to \qquad ounces
*(20) $235 \times 146=$ \qquad
(21) $0.323232 \ldots=$ \qquad (proper fraction)
(22) Which of the following is both a happy and a perfect number, 7, 28, or 42? \qquad
(23) $30603 \div 101=$
(24) How many positive integral divisors does 64 have?
(25) If $f(x)=x^{2}-10 x+25$ then $f(37)$ is \qquad
(26) If $4 x+3=2$ then $2 x-2=$ \qquad
(27) 86 base ten is equivalent to \qquad base 5
(28) The sum of the roots of $2 x^{2}+3 x=5$ is \qquad
(29) The area of a square is $12 \frac{1}{4}$ square inches. The perimeter of this square is \qquad inches
*(30) $\sqrt{488} \times 221=$ \qquad
(31) $(15+16 \times 17) \div 7$ has a remainder of \qquad
(32) The multiplicative inverse of -1.25 is \qquad
(33) $|-1-1|+|-2+3|-|5-8|=$ \qquad
(34) 4×4 ! -12×3 ! $=$ \qquad
(35) $2 \frac{3}{5} \times 2 \frac{2}{5}=$ \qquad (mixed number)
(36) The set $\{\mathbf{L}, \mathrm{U}, \mathrm{C}, \mathrm{A}, \mathrm{S}\}$ has \qquad proper subsets
(37) $4^{2}+3^{3}+2^{4}=$ \qquad
(38) $\sqrt{243}-\sqrt{75}=\sqrt{x}$. Find x. \qquad
(39) If set A has 6 elements, set B has 5 elements, and $A \cap B$ has 4 elements, then $A \cup B$ has elements.
*(40) $224488 \div 111=$
(41) If P is 20% of Q and Q is 25% of R, then P is what percent of R ? \qquad \%
(42) $113 \times 212=$ \qquad
(43) If $x+y=2$ and $x y=2$ then $x^{3}+y^{3}=$ \qquad
(44) $\frac{3}{4}-\frac{10}{13}=$ \qquad
(45) $\ldots,-1 \frac{1}{3},-\frac{2}{3}, x, y, \ldots$ is an arithmetic sequence. Find the value of y.
(46) $\frac{7}{40}=$ \qquad \% (decimal)
(47) Find the harmonic mean of 2 and 5. \qquad
(48) The least integer x such that $3-5 x<2$ is \qquad
(49) $95^{\circ} \mathrm{F}=$ \qquad ${ }^{\circ} \mathrm{C}$
*(50) $125 \times 37.5 \div \frac{5}{8}=$ \qquad
(51) The probability of drawing a Queen or a King from a standard 52 card deck is \qquad
(52) ${ }_{5} \mathrm{P}_{3}+{ }_{5} \mathrm{P}_{2}=$ \qquad
(53) 45 degrees $=\frac{\pi}{k}$ radians. Find k. \qquad
$(54)(2+7 i)(2-7 i)=a+b i$. Find $a+b$.
(55) $\sin \left(\frac{\pi}{3}\right) \times \cos \left(\frac{\pi}{6}\right)=$ \qquad
(56) The vertex of the parabola $y=x^{2}-6 x+3$ is (h, k). Find h.
(57) The eleventh term of $6,11,16,21, \ldots$ is \qquad
(58) The largest number of regions created by five intersecting lines is
(59) $1-4+9-16+25-36+\ldots-64=$ \qquad
${ }^{*}(60) e^{(e)} \times \pi^{(\pi)}=$ \qquad
(61) $448 \times 48=$ \qquad 8
(62) How much time has passed from 3:45 p.m. to 11:15 p.m. the same day? \qquad hours
(63) The slope of the line containing the points $(-1,-2)$ and $(3,4)$ is \qquad
(64) The simplified coefficient of the $x y^{2}$ term in the expansion of $(2 x+3 y)^{3}$ is \qquad
(65) The greatest integer function $g(x)=[2 x-3]$ has a value of \qquad for $g(\pi)$
(66) If $\log _{x} 8+\log _{x} 8=3$ then $x=$ \qquad
(67) $\sqrt{2809}=$
(68) $(679+849) \div 8$ has a remainder of \qquad
(69) If A is 125% of B and B is 120% of C then A is \qquad \% greater than C .
*(70) The area of $20 x^{2}+45 y^{2}=900$ is \qquad
(71) The sum of the first 9 terms of the Fibonacci characteristic sequence $\mathbf{1 , 4 , 5 , 9 , 1 4 , 2 3 , \ldots \text { is }}$ \qquad
(72) If $f(x)=3 x-2$, then $f^{-1}(-1)=$ \qquad
(73) If $\operatorname{det}\left|\begin{array}{rr}-1 & -2 \\ 3 & x\end{array}\right|=5$, then $x=$ \qquad
(74) $\lim _{x \rightarrow 3}\left(\frac{x^{2}-3 x}{x-3}\right)=$ \qquad
(75) The graph of $f(x)=2^{(x-2)}$ has a horizontal asymptote at $\mathbf{y}=$ \qquad
(76) If $f(x)=\frac{3 x-1}{2 x+1}$, then $f^{\prime}(1)=$ \qquad
(77) $1(1!)+2(2!)+3(3!)+4(4!)=$ \qquad
(78) $\int_{2}^{3} x^{2} d x=$ \qquad
(79) Given $5966 \div 38=157$. Find $5966 \div 9 \frac{1}{2}$. \qquad
*(80) 3210 miles/hour = \qquad feet/second

(1) 4019	(19)	8000	(35) $6 \frac{6}{25}$	(59)	-36
(2) 22099	*(20)	32595-36025	(36) 31	*(60)	525-580
(3) 6992	(21)	$\frac{32}{99}$	(37) 59	(61)	220
(4) 80.4	(22)	28	(38) 48	(62)	7.5, $\frac{15}{2}, 7 \frac{1}{2}$
(5) $1.125, \frac{9}{8}, 1 \frac{1}{8}$	(23)		(39) 7	(63)	1.5, $\frac{3}{2}, 1 \frac{1}{2}$
(6) $10 \frac{2}{3}$	(24)	7	*(40) 1922-2123	(64)	54
(7) $\frac{4}{25}$	(25)	1024	(41) 5	(65)	3
(8) 5		$-2.5,-\frac{5}{2}$ $-2 \frac{1}{2}$	(42) 23956	(66)	4
(9) . 375			(43) - 4	(67)	53
			(44) $-\frac{1}{52}$	(68)	1
(10) 6583-7275		$-1.5,-\frac{3}{2}$	(45) $\frac{2}{3}$	(69)	50
$\text { (11) } 144$		$-1 \frac{1}{2}$	(46) 17.5	*(70)	90-98
(12) 1728			(47) $20 \quad 6$	(71)	250
(13) 40	*(30)	4638-5126	(47) $\frac{20}{7}, 2 \frac{6}{7}$		
(14) 736	(31)	0	(48) 1	(72)	$\frac{1}{3}$
(15) 144		$-8,-\frac{4}{5}$	(49) 35	(73)	1
(16) $\frac{11}{13}$	(33)	0	*(50) 7125-7875	(74)	3
(17) 3			(51) $\frac{2}{13}$	(75)	0
(18) 1464			(52) 80	(76)	$\frac{5}{9}$
			(53) 4	(77)	119
			(54) 53	(78)	$\frac{19}{3}, 6 \frac{1}{3}$
			(55) . $75, \frac{3}{4}$	(79)	628
			(56) 3	*(80)	$4473-4943$
			(57) 56		
			(58) 16		

The University Interscholastic League
 Number Sense Test • HS Invitational A • 2010

Contestant's Number \qquad

Read directions carefully before beginning test

DO NOT UNFOLD THIS SHEET UNTIL TOLD TO BEGIN

Final \qquad
\qquad 2nd 1st \qquad

Directions: Do not turn this page until the person conducting this test gives the signal to begin. This is a ten-minute test. There are 80 problems. Solve accurately and quickly as many as you can in the order in which they appear. ALL PROBLEMS ARE TO BE SOLVED MENTALLY. Make no calculations with paper and pencil. Write only the answer in the space provided at the end of each problem. Problems marked with a $\left({ }^{*}\right)$ require approximate integral answers; any answer to a starred problem that is within five percent of the exact answer will be scored correct; all other problems require exact answers.

The person conducting this contest should explain these directions to the contestants.
STOP -- WAIT FOR SIGNAL!
(1) $210+21-2010=$ \qquad
(2) $\frac{3}{8} \times \frac{4}{9}=$ \qquad
(3) $\$ 20.10 \div 3=\$$ \qquad
(4) $2.01-2 \frac{1}{10}+21=$ \qquad (decimal)
(5) $\frac{4}{9} \div .3=$ \qquad
(6) $44 \%=$ \qquad (proper fraction)
(7) $9 \times 6 \div 3-6+9=$ \qquad
(8) $34 \times 43=$ \qquad
(9) $63 \times 15-82 \times 15=$ \qquad
*(10) $753-936+842=$ \qquad
(11) $17^{2}=$ \qquad
(12) If 8 ounces of M\&M's costs $\$ 1.10$ then $1 \frac{1}{2}$ pounds of M\&M's will cost \$ \qquad (28) $(26 \times 24-22) \div 7$ has a remainder of \qquad
(29) 25836 k is divisible by 6 . Find $\mathrm{k}>0$. \qquad
*(30) $30456 \div 141=$ \qquad
(31) If set A has 6 elements, $A \cap B$ has 3, and $A \cup B$ has 9 , then set B has \qquad elements.
(32) $2+1+3+4+7+\ldots+47=$ \qquad
(33) $|-6-1|+|-5+2|-|4-3|=$ \qquad
(34) $\sqrt{125}+\sqrt{20}=\sqrt{x}$. Find x.
(35) The discriminant of $6 x^{2}+7 x+2=0$ is \qquad
(36) Picture A is $8^{\prime \prime}$ by $10^{\prime \prime}$ and B is $9^{\prime \prime}$ by 12 ". The ratio of A 's perimeter to B^{\prime} s perimeter is \qquad
(37) Find k if $67^{2}-59^{2}=16 k$. $k=$ \qquad
(38) $5 \times 5!+20 \times 4!=$ \qquad
(39) $7 \frac{4}{9} \times 7 \frac{5}{9}=$ \qquad (mixed number)
*(40) $400 \log 800=$ \qquad
$(41)(13)^{2}-(8)(21)=$
(42) $38 \times 11+33 \times 24=$ \qquad
(43) If $x+y=-1$ and $x y=2$ then $x^{3}+y^{3}=$ \qquad
(44) The x-intercept of the line $3 x-4 y=5$ is (h, k). Find h.
(45) The product of the roots of
$x^{4}+2 x^{3}-9 x^{2}-2 x+8=0$ is \qquad
(46) $\frac{7}{20}-\frac{22}{59}=$ \qquad
(47) The arithmetic mean of 17,22 , and 25 is \qquad
(48) Given $1690 \div 26=65$. Find $1690 \div 5 \frac{1}{5}$. \qquad
(49) $25^{\circ} \mathrm{C}=$ \qquad ${ }^{\circ}$ F
*(50) $833 \times 2.5 \div \frac{5}{12}=$ \qquad
(51) The odds of drawing an ace from a standard 52 card deck is \qquad
(52) The legs of a right Δ are 8 and 15 . The length of the altitude to the hypotenuse is \qquad
(53) A convex octagon has \qquad distinct diagonals
(54) $1233_{6}-45{ }_{6}=$ \qquad 6
(55) $(2-5 i)(2-5 i)=(a+b i)$. Find a. \qquad
(56) If $\log _{2}(7 x+4)=5$ then $x=$ \qquad
(57) The set $\{\mathrm{e}, \mathrm{m}, \mathrm{p}, \mathrm{t}, \mathrm{y}\}$ has \qquad 3-element subsets
(58) 8 intersecting lines create at most \qquad regions
(59) $7^{2}-6^{2}+5^{2}-4^{2}+\ldots+1=$ \qquad
*(60) $8^{3} \div 4^{6} \times 2^{10}=$ \qquad
 \qquad
(62) If $\log _{5} x-\log _{5} 8=1$ then $x=$ \qquad
(63) If A is $\frac{\mathbf{2}}{3}$ of B and B is 60% of C then A is what fractional part of C ? \qquad (proper fraction)
(64) How many ways can Larry, Mo, and Curly sit in a row of five chairs? \qquad
(65) The greatest integer function $g(x)=[3-2 x]$ has a value of \qquad for $g(\pi)$
(66) $2!+3!+4!\cong x(\bmod 5) \& 0 \leq x \leq 4 . \quad x=$ \qquad
(67) $\sqrt{12544}=$ \qquad
(68) $2 \sin 105^{\circ} \cos 105^{\circ}=$ \qquad
(69) $3+4+7+11+18+29+\ldots+123=$ \qquad
*(70) The area of $40 x^{2}+45 y^{2}=1800$ is \qquad
(71) If $f(x)=\frac{5 x-2}{4 x+3}$, then $f^{\prime}(-1)=$ \qquad
(72) $1(1!)+2(2!)+3(3!)+\ldots+6(6!)=$ \qquad
(73) Let $f(x)=\sqrt{3-4 x}$ be a real valued function, where $x \in\{$ Reals \}. The domain of $f(x)$ is $\{\mathbf{x} \mid \mathbf{x} \leq$ \qquad
(74) $\int_{0}^{1} \sqrt{x} d x=$ \qquad
(75) If $h(x)$ is the slant asymptote of $f(x)=\frac{x^{2}-3 x+1}{x-3}$, then $h(1)=$ \qquad
(76) If $f(x)=x^{4}+x^{2}-x$, then $f^{\prime \prime}(-3)=$ \qquad
(77) If $\csc \theta=\mathbf{1 . 2}$ then $\sin \theta=$ \qquad
(78) $\lim _{x \rightarrow 0}\left(\frac{\sin 3 x}{x}\right)=$ \qquad
(79) $f(x)=5 x-6$ and $g(x)=3 x-4 . f(g(2))=$ \qquad
*(80) 6666 feet/second = \qquad miles/hour

University Interscholastic League - Number Sense Answer Key HS • Invitation A • 2010 *number) $x-y$ means an integer between x and y inclusive
NOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal
(1) -1779
(17) 97
(33) 9
(58) 37
(2) $\frac{1}{6}$
(18) 1331
(19) 402
*(20) 114581 - 126642
(21) 132
(34) 245
(59) 28
(35) 1
(36) $\frac{6}{7}$
(37) 63
(38) 1080
(63) $\frac{2}{5}$
(39) $56 \frac{20}{81}$
(64) 60
(7) 21
(8) 1462
(24) 10
(25) 5
(9) -285
(26) 4.88
(27) .25, $\frac{1}{4}$
(11) 289
(28) 0
(12) $\$ 3.30$
(13) 3
(29) 6
*(30) $206-226$
(14) 3
(31) 6
(15) 10
(32) 122
(16) $2.5, \frac{5}{2}, 2 \frac{1}{2}$
(22) 9
(23) 3290
*(40) 1104 - 1219
(65) -4
(41) 1
(66) 2
(42) 1210
(67) 112
(43) 5
$(68)-.5,-\frac{1}{2}$
(44) $\frac{5}{3}, 1 \frac{2}{3}$
(69) 318
(45) 8
(46) $-\frac{27}{1180}$
*(70) 127 - 139
(71) 23
(47) $\frac{64}{3}, 21 \frac{1}{3}$
(48) 325
(49) 77
(72) 5039
(73). $75, \frac{3}{4}$
*(50) $4749-5247$
(51) $\frac{1}{12}$
(76) 110
(52) $\frac{120}{17}, 7 \frac{1}{17}$
(77) $\frac{5}{6}$
(53) 20
(78) 3
(54) 34
(79) 4
(55) -21
*(80) $4318-4772$
(56) 4
(57) 10

The University Interscholastic League Number Sense Test • HS Invitational B • 2010

Contestant's Number

Read directions carefully before beginning test

DO NOT UNFOLD THIS SHEET

 UNTIL TOLD TO BEGINFinal \qquad
\qquad
2nd
1st
Score

Initials

Directions: Do not turn this page until the person conducting this test gives the signal to begin. This is a ten-minute test. There are 80 problems. Solve accurately and quickly as many as you can in the order in which they appear. ALL PROBLEMS ARE TO BE SOLVED MENTALLY. Make no calculations with paper and pencil. Write only the answer in the space provided at the end of each problem. Problems marked with a (*) require approximate integral answers; any answer to a starred problem that is within five percent of the exact answer will be scored correct; all other problems require exact answers.

The person conducting this contest should explain these directions to the contestants.

STOP -- WAIT FOR SIGNAL!

(1) $3141-2718+1618=$
(2) $\frac{3}{5} \div \frac{21}{25}=$ \qquad
(3) $\$ 15.15 \times 4=\$$ \qquad
(4) $\frac{22}{25}=$ \qquad \%
(5) $1 \frac{1}{6} \div .08333 \ldots=$ \qquad
(6) $3.4+2 \frac{3}{10}-1=$ \qquad (decimal)
(7) $77 \div 25+123 \div 25=$ \qquad
(8) $54 \times 45=$ \qquad
(9) $8 \div 4-2+4 \times 8=$ \qquad
*(10) $2468+3579+1001=$ \qquad
(11) $14^{2}=$ \qquad
(12) $14^{3}=$ \qquad
(13) The LCM of 48 and 57 is \qquad
(14) $(34 \times 56-78) \div 9$ has a remainder of \qquad
(15) 1 acre is equivalent to \qquad square feet
(16) The mode of $1,3,2,3,4,2,1, \& 3$ is \qquad
(17) $\mathrm{DLV} \times \mathrm{CXI}=$ \qquad (Arabic Numeral)
(18) How many elements are in
$\{x \mid 30<x<40$, where $x \in\{$ Primes $\}\}$? \qquad
(19) If a. 6-pack of $\mathbf{1 2 ~ o z . ~ c a n s ~ o f ~ s o d a ~ c o s t s ~} \$ 4.50$ then one 12 oz . can will cost \$ \qquad
*(20) $\sqrt{678} \times \sqrt{1154}=$ \qquad
(21) 115% of 15 is \qquad
(22) If $x-4=2$, then $4 x+2=$ \qquad
(23) $122 \times 16=$ \qquad
(24) Round $\sqrt{8}-\sqrt{2}$ to the tenths place. \qquad
(25) What number multiplied by 12 and added to 33 gives the same results? \qquad
(26) $8 \frac{3}{11} \times 8 \frac{8}{11}=$ \qquad (mixed number)
(27) 1.777... $-1.555 \ldots+1.333 \ldots=$ \qquad
(28) $2+1+3+4+7+\ldots+47+76=$ \qquad
(29) 25836 k is divisible by 8 . Find $\mathrm{k}>0$. \qquad
*(30) $783209 \div 247=$ \qquad
(31) $5!\times 6+6!\times 4=$ \qquad
(32) $|-8|-1+|4|-3|-2-5|=$ \qquad
(33) Which of the following numbers is both abundant and unlucky, 24,25 , or 28 ?
(34) $\sqrt{192}-\sqrt{75}=\sqrt{x}$. Find x.
(35) The discriminant of $4 x^{2}+19 x-2=0$ is \qquad
(36) Set A has 8 elements, set B has 12, $A \cap B$ has 5, and $A \cup B$ has k. Find k.
(37) Find k if $74^{2}-66^{2}=8 k$. $k=$ \qquad
(38) 12 is to 18 as 15 is to \qquad (decimal)
(39) The sum of the positive integral divisors of 108 is \qquad
*(40) $16 \times 16 \times 16 \times 16=$
(41) The slope of the line $6 x+2 y=8$ is \qquad
(42) $28 \times 45-15 \times 34=$ \qquad
(43) $40{ }^{\circ} \mathrm{C}=$ \qquad ${ }^{\circ} \mathrm{F}$
$(44)(34)^{2}-(21)(55)=$ \qquad
(45) The sum of the product of the roots taken two at a time of $x^{4}-2 x^{3}-13 x^{2}+14 x=-24$ is \qquad
(46) $\frac{3}{5}-\frac{25}{39}=$
(47) The geometric mean of 8,25 , and 40 is \qquad
(48) Given $1190 \div 34=35$. Find $1190 \div 4.25$. \qquad
(49) If $x-y=3$ and $x y=3$ then $x^{3}-y^{3}=$ \qquad
*(50) $798 \times 1.0625 \div \frac{17}{20}=$ \qquad
(51) The probability of randomly selecting a vowel from the elements of $\{p, r, o, d, u, c, t\}$ is \qquad
(52) The legs of a right \triangle are 5 and 12 . The length of the altitude to the hypotenuse is
(53) Find the next term of the geometric sequence $-1 \frac{2}{3}, \frac{2}{3},-\frac{4}{15}, \ldots$. \qquad
(54) $222_{4}-33_{4}=$ \qquad 4
(55) $(4-7 i)(4+7 i)=(a+b i)$. Find $a+b$. \qquad
(56) If $\log _{16}(4 x)=\frac{3}{4}$ then $x=$
(57) The complex conjugate of $3+4 i$ is $3+$ \qquad i.
(58) $888 \times \frac{24}{37}=$ \qquad
(59) $2^{2}+1^{2}+3^{2}+4^{2}+7^{2}=$ \qquad
*(60) $(3.1 \pi)(2.7 e)\left(\frac{1+\sqrt{5}}{2}\right)=$ \qquad
(61) $\left(65_{8}\right)+\left(54_{8}\right) \div 7$ has a remainder of \qquad
(62) If $\log _{4} 2 x+\log _{4} 3=2$ then $x=$ \qquad
(63) $1.5 P=\frac{1}{5} Q$ and 40% of $Q=R . R$ is \qquad $\%$ of P.
(64) How many ways can Snow White and the seven dwarfs be seated at the round table? \qquad
(65) The greatest integer function $g(x)=[1-x]$ has a value of \qquad for $g(\sqrt{3})$
(66) $\frac{5!}{2!+3!} \cong x(\bmod 7) \& 0 \leq x \leq 6 . \quad x=$ \qquad
(67) $\sqrt{42436}=$ \qquad
(68) $\cos ^{2}\left(150^{\circ}\right)-\sin ^{2}\left(150^{\circ}\right)=$ \qquad
(69) $2+5+8+11+14+\ldots+44=$ \qquad
*(70) The volume of a sphere with a diameter of 12 cm is \qquad $\mathrm{cu} . \mathrm{cm}$
(71) If $f(x)=\frac{2 x+3}{x-4}$, then $f^{\prime}(5)=$ \qquad
(72) $4(4!)-3(3!)-2(2!)-1(1!)=$ \qquad
(73) The slope of the line tangent to $y=3 x^{2}-x+2$ at $(1,4)$ is \qquad
(74) $\int_{-1}^{1}(x+1) d x=$ \qquad
(75) If $h(x)$ is the slant asymptote of $f(x)=\frac{4 x^{2}+5 x+6}{2 x+1}$, then $h(-3)=$ \qquad
(76) $\sum_{0}^{3}(2 x-1)=$ \qquad
(77) $f(x)=7-3 x$ and $g(x)=6+2 x . f(g(-1))=$ \qquad
(78) $4141 \times 1001=$ \qquad
(79) Change .33 base 6 to a base ten decimal. \qquad
*(80) 5300 inches/second = \qquad miles/hour

University Interscholastic League - Number Sense Answer Key HS - Invitation B - 2010
*number) $x-y$ means an integer between x and y inclusive
NOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal
(1) 2041
(18) 2
(33) 24
(34) 27
(3) $\$ 60.60$
(19) $\$.75$
(35) 393
(36) 15
(37) 140
(38) 22.5
(39) 280
*(40) $62260-68812$
(41) -3
(42) 750
(43) 104
(44) 1
(45) -13
(46) $-\frac{8}{195}$
(47) 20
(48) 280
(49) 54
*(50) $948-1047$
(51) $\frac{2}{7}$
(52) $\frac{60}{13}, 4 \frac{8}{13}$
(53) $\frac{8}{75}$
(54) 123
(55) 65
(56) 2
(58) 576
(59) 79
(71) -11
(57) -4
*(60) $110-121$
(61) 6
(62) $\frac{8}{3}, 2 \frac{2}{3}$
(63) 300
(64) 5040
(65) -1
(66) 3
(67) 206
(68) . $5, \frac{1}{2}$
(69) 345
*(70) $860-950$
(72) 73
(73) 5
(74) 2
(75) $-4.5,-\frac{9}{2}$, $-4 \frac{1}{2}$
(76) 8
(77) -5
(78) 4145141
(79) $\frac{7}{12}$
*(80) 287 - 316

2009-10 TMSCA High School Number Sense Test 6

(1) $102-9002=$ \qquad
(2) $25 \times 2010=$ \qquad
(3) $20.09+2.010=$ \qquad (decimal)
(4) $\frac{5}{7} \div \frac{15}{28}=$ \qquad
(5) $2010 \div 11$ has a remainder of \qquad
(6) $5 \frac{2}{3}+4 \frac{3}{4}=$ \qquad (mixed number)
(7) $(-8.75) \div(2.5)=$ \qquad (decimal)
(8) $\frac{1}{12}=$ \qquad \%
(9) $24^{2}=$
*(10) $4554-5665-6776=$ \qquad
(11) $20 \div(16-12)+8 \times 4=$ \qquad
(12) 1 yard $\times 2$ yards $\times 3$ yards $=$ \qquad cubic feet
(13) $3 \frac{4}{5}-8 \frac{9}{10}=$ \qquad (mixed number)
(14) $12^{3}=$ \qquad
(15) $\mathrm{DLV}+\mathrm{MCDLV}=$ \qquad (Arabic Numeral)
(16) The LCM of 16,24 , and 32 is \qquad
(17) The number of positive prime integers that divide 60 is
(18) $\mathbf{1 7 6 4}=\mathbf{4 2} \times$
(19) 2 rods is equivalent to \qquad feet
*(20) $\sqrt{7766}=$ \qquad
(21) $73 \times \frac{73}{75}=$ \qquad (mixed number)
(22) Which of the following is both a prime number and an odious number, 5,7 , or 9 ? \qquad
(23) If 3 keys cost $\$ 1.25$ then 15 keys cost $\$$ \qquad
(24) $756453 \div 4$ has a remainder of \qquad
(25) What number subtracted from 24 and multiplied by 5 , gives the same results? \qquad
(26) The $11^{\text {th }}$ triangular number is \qquad
(27) Let $\mathrm{k}=\sqrt{2}+\sqrt{3}$. Truncate k to two decimal places. \qquad (decimal)
(28) $|-6-5|+|-4+3|-2|-1|=$ \qquad
(29) The set $\{f, 0, r, t, y\}$ has \qquad 4-elements subsets *(30) $959 \times 626=$ \qquad
(31) $45_{6}+53_{6}=$ \qquad 6
(32) If $8-x=3$, then $3 x-8=$ \qquad
(33) $1^{2}+3^{2}+4^{2}+7^{2}+11^{2}=$
(34) 3×3 ! -12×4 ! $=$ \qquad
(35) $7 \frac{1}{6} \times 7 \frac{5}{6}=$ \qquad (mixed number)
(36) $\{p, 0, w, e, r\} \cup\{s, e, t\}$ has \qquad distinct elements
(37) Find k if $43^{2}-39^{2}=8$ k. $k=$ \qquad
(38) If $\sqrt{5-\sqrt{3+\sqrt{x}}}=1$ then $x=$ \qquad
(39) If set A has 5 elements, set B has 4 elements, and $A \cup B$ has 6 elements, then the number of elements in $A \cap B$ is \qquad
*(40) $8 \frac{1}{3} \% \times 173 \div 6 \frac{1}{4} \%=$ \qquad
(41) The slope of the line $x+2 y=4$ is \qquad
(42) $233 \times 112=$ \qquad
(43) If $x-y=-1$ and $x y=2$ then $x^{3}-y^{3}=$ \qquad
(44) $11_{4}+22_{4}+33_{4}=$ \qquad 10
(45) If ..., 4.5, $1.5, x, y, \ldots$ is a geometric sequence, then the value of y is \qquad
(46) The product of the roots of $x^{3}+x^{2}-5 x+3=0$ is \qquad
(47) Find the geometric mean of 4 and 16.
(48) The legs of a right Δ are 5 and 12 . The length of the altitude to the hypotenuse is \qquad
(49) $40^{\circ} \mathrm{C}=$ \qquad ${ }^{\circ} \mathrm{F}$
*(50) $19 \times 109+109 \times 21=$
(51) The number of distinct diagonals of a convex pentagon is
(52) Given $8424 \div 36=234$. Find $8424 \div 7 \frac{1}{5}$.
(53) 0.444... - .151515...
(54) The simplified coefficient of the $x^{2} y$ term in the expansion of $(x-3 y)^{3}$ is \qquad
(55) $\sin \left(\frac{\pi}{3}\right) \div \cos \left(\frac{5 \pi}{6}\right)=$ \qquad
(56) If $\log _{4}\left(2^{x}\right)=3$ then $x=$ \qquad
$(57)(21)^{2}-(13)(34)=$ \qquad
(58) The largest number of regions created by six intersecting lines is \qquad
(59) $1-2^{2}+3^{2}-4^{2}+5^{2}-\ldots+9^{2}=$ \qquad
*(60) $714.2857 \times 246=$ \qquad
(61) If $f(x)=2 x-5$ and $g(x)=4 x+3$, then $f(g(-1))=$ \qquad
(62) How much time has passed from 8:20 a.m. to 3:15 p.m. the same day? \qquad hours
(63) If A is 70% of B and B is 130% of C then A is \ldots \% less than C .
(64) If $\log _{x} 50-\log _{x} 2=2$ then $x=$ \qquad
(65) How many ways can Romeo and Juliet sit in a row of four chairs? \qquad
(60) $\cos ^{2} 30^{\circ}-\sin ^{2} 30^{\circ}=$ \qquad
(67) $\sqrt{3844}=$ \qquad
(68) $\left(53_{6}\right)\left(45_{6}\right) \div 5$ has a remainder of \qquad
(69) $\left|\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right|-\left|\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right|=\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|$. Find $a-d$. \qquad
*(70) $31.41 \times e+27.18 \times \pi=$ \qquad
(71)The largest value of k such that ${ }_{6} \mathrm{C}_{\mathrm{k}}=15$ is \qquad
(72) $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}=$ \qquad
(73) If $f(x)=\sqrt{2-5 x}$, where $x, f(x) \in\{$ Reals $\}$ then the range of $f(x)$ is $\{f(x) \mid f(x) \geq$
(74) $\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} \times \frac{5}{6}=$ \qquad
(75) The graph of $f(x)=3^{\left(\frac{3}{x}\right)}$ has a horizontal asymptote at $\mathrm{y}=$ \qquad
(76) If $f(x)=\frac{4 x+3}{2 x-1}$, then $f^{\prime}(1)=$ \qquad
(77) $1(1!)+2(2!)+3(3!)+\ldots+5(5!)=$ \qquad
(78) $\int_{0}^{1}(-x)^{3} d x=$ \qquad
(79) Change 22 base 4, to a base ten decimal.
*(80) 4444 feet/second $=$ \qquad miles/hour
(1) -8900
(18) 42
(2) 50250
(19) 33
(3) 22.1
(4) $\frac{4}{3}, 1 \frac{1}{3}$
*(20) 84-92
(21) $71 \frac{4}{75}$
(22) 7
(5) 8
(23) $\$ 6.25$
(24) 1
(25) 4
(26) 66
(27) 3.14
(28) 10
(29) 5
*(30) 570318-630350
(31) 142
(32) 7
(33) 196
(34) -270
(35) $56 \frac{5}{36}$
(36) 7
(37) 41
(38) 169
(39) 3
*(40) 220-242
(41) $-.5,-\frac{1}{2}$
(42) 26096
(43) -7
(44) 30
(45) $\frac{1}{6}$
(46) -3
(47) 8
(48) $\frac{60}{13}, 4 \frac{8}{13}$
(49) 104
*(50) 4142 - 4578
(51) 5
(52) 1170
(53) $\frac{29}{99}$
(54) -9
(55) -1
(56) 6
(57) -1
(58) 22
(59) 45
*(60) 166929 184499
(61) -7
(62) $\frac{83}{12}, 6 \frac{11}{12}$
(63) 9
(64) 5
(65) 12
(66) .5, $\frac{1}{2}$
(67) 62
(68) 2
(69) -5
*(70) 163-179
(71) 4
(72) .25, $\frac{1}{4}$
(73) 0
(74) $\frac{1}{6}$
(75) 1
(76) -10
(77) 719
(78) $-\frac{1}{4}$
(79) . 625
*(80) 2879-3181
(1) $15 \times 222=$ \qquad
(2) $2345+3210=$ \qquad
(3) $135-246=$ \qquad
(4) $2010 \div 25=$ \qquad
(5) $192837 \div 11$ has a remainder of \qquad
(6) $4 \frac{1}{8}-2 \frac{1}{4}=$ \qquad (mixed number)
(7) $(-3.2) \times(0.32)=$ \qquad (decimal)
(8) $\frac{3}{16}=$ \qquad \% (decimal)
(9) $15 \div(12-9)+6 \times 3=$ \qquad
*(10) $6879-345+21=$ \qquad
(11) $1 \frac{2}{3} \times 2 \frac{3}{4}=$ \qquad (mixed number)
(12) 2 feet 8 inches +1 foot 10 inches $=$ \qquad yards
(13) $15^{2}=$ \qquad
(14) $15^{3}=$ \qquad
(15) $M M X \div X V=$ \qquad (Arabic Numeral)
(16) The GCF of 32,48 , and 96 is \qquad
(17) The sum of the proper divisors of 76 is \qquad
(18) $63=3969 \div$ \qquad
(19) A half mile is equivalent to \qquad rods
*(20) $\sqrt{19283}=$ \qquad
(21) $12 \times 345=$ \qquad
(22) One-third of what number gives the same results as that number minus 6 ? \qquad
(23) If 4 CDs cost $\$ 50.00$ then 10 CDs cost $\$$ \qquad
(24) $66 \times \frac{66}{71}=$ \qquad (mixed number)
(25) Which of the following is an evil number, 11,13 , or 15 ? \qquad
(26) The total number of 1-element subsets and 4-element subsets of the set $\{r, 0, u, n, d\}$ is \qquad
(27) Let $k=\sqrt{5}+\sqrt{6}$. Truncate k to one decimal place. (decimal)
(28) $|-1|-1+|-2|+3-5 \cdot|-8|=$ \qquad
(29) The $3^{\text {rd }}$ hexagonal number is \qquad
*(30) $8888 \times 777=$ \qquad
(31) $123_{4} \times 3_{4}=$ \qquad 4
(32) If $3 x+5=1$, then $6 x-1=$ \qquad
(33) $1^{2}+5^{2}+6^{2}+11^{2}=$ \qquad
(34) $5 \times 4!+20 \times 3!=$ \qquad
(35) $10 \frac{3}{5} \times 5 \frac{4}{5}=$ \qquad (mixed number)
(36) $\{1, \mathbf{i , n , e}\} \cap\{\{, 1, \mathbf{o}, \mathrm{p}, \mathrm{e}\}$ has \qquad distinct elements
(37) Find k if $53^{2}-57^{2}=4 k . k=$ \qquad
(38) If $\sqrt{4-\sqrt{2+\sqrt{x-1}}}=1$ then $x=$ \qquad
(39) The units digit of 7^{7} is \qquad
*(40) $16 \frac{2}{3} \% \times 238 \div \frac{1}{12}=$ \qquad
(41) The slope of the line containing the points $(-2,3)$ and $(4,-5)$ is \qquad
(42) $114 \times 411=$
(43) The sum of the product of the roots taken two at a time of $x^{3}+x^{2}-5 x+3=0$ is \qquad
(44) $1111_{4}+222_{5}+33_{6}=$ \qquad 10
(45) If ..., $2.4, x, 0.6, y, \ldots$ is a geometric sequence, then the value of $x+y$ is \qquad
(46) If $x+y=7$ and $x y=2$ then $x^{3}+y^{3}=$ \qquad
(47) $86^{\circ} \mathrm{F}=$ \qquad ${ }^{\circ} \mathrm{C}$
(48) One leg of a right \triangle is 40 and the hypotenuse is 41 . The length of the other leg is \qquad
(49) Find the harmonic mean of 4 and 16.
*(50) $5380 \div 18+6602 \div 22=$ \qquad
(51) $(89)^{2}-(55)(144)=$ \qquad
(52) Given $648 \times 3 \frac{3}{4}=2430$. Find 648×11.25.
(53) $0.212121 \ldots \div . .090909 \ldots=$
(54) A convex polygon has 14 distinct diagonals. How many sides does it have? \qquad
(55) $\tan \left(\frac{\pi}{6}\right) \times \cot \left(\frac{\pi}{3}\right)=$ \qquad
(56) If $\log _{9}\left(3^{x}\right)=3$ then $x=$ \qquad
(57) The simplified coefficient of the $x^{2} y^{2}$ term in the expansion of $(2 x+y)^{4}$ is \qquad
(58) If $(4+3 i) \div 2 i=a+b i$, then $a=$
(59) ${ }_{6} \mathrm{P}_{3}-{ }_{6} \mathrm{C}_{3}=$
*(60) $857.142 \times 279.2=$
(61) If $f(x)=5-2 x$, then $f^{-1}(3)=$ \qquad
(62) How much time has passed from 11:35 a.m. to 2:25 p.m. the same day? \qquad minutes
(63) If P is $\frac{3}{4}$ of Q and Q is $\frac{2}{3}$ of R then R is what percent of P ?
(64) If $\log _{x} 50+\log _{x} 8=2$ then $x=$ \qquad
(65) How many words, real or imaginary, can be made from the letters $\mathbf{C}, \mathrm{A}, \mathrm{L}, \mathrm{C}, \mathrm{U}, \mathrm{L}, \mathrm{U}, \mathrm{S}$?
(60) $\cos ^{2}\left(\frac{3 \pi}{2}\right)+\sin ^{2}\left(\frac{3 \pi}{2}\right)=$ \qquad
(67) $\sqrt{5329}=$ \qquad
(68) $\left(87_{11}\right)\left(79_{11}\right) \div 10$ has a remainder of \qquad
(69) $\left|\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right|+\left|\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right|=\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|$. Find $b+c$. \qquad
*(70) $(3.14)^{e} \times(2.718)^{\pi}=$ \qquad
(71) $\sum_{1}^{4} x^{2}-1=$ \qquad
(72) $\lim _{x \rightarrow 5} \frac{x^{2}-8 x+15}{x-5}=$ \qquad
(73) Set $U=\{x \mid x \in\{$ Integers $\},-3<x<5\}$ is the universal set and set $A=\{0,1,2\}$. How many elements are in set \boldsymbol{A}^{\prime} ?
(74) The probability of rolling a factor of 6 on a single die is \qquad
(75) $f(x)=\frac{3-4 x}{x-5}$ has how many asymptotes?
(76) If $f(x)=x^{2}-8 x+15$, then $f^{\prime}(-1)=$ \qquad
(77) $2(1!)+3(2!)+4(3!)+5(4!)+6(5!)=$ \qquad
(78) $\int_{-1}^{4}(2 x) d x=$ \qquad
(79) Change 34 base 5, to a base ten fraction.
*(80) 5432 miles/hour $=$ \qquad feet/second

009-10 TMSCA High School Number Sense Test / 3-Answer Key number) $x-y$ means an integer between x and y inclusive OTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal

(1) 3330	(19)	160	(35) $61 \frac{12}{25}$	(59)	100
(2) 5555	*(20)	132-145	(36) 2	*(60)	227349 -
					251279
(3) -111	(21)	4140	(37) - 110		
				(61)	
(4) $80.4, \frac{402}{5}, 80 \frac{2}{5}$	(22)	9	(38) 50		170
(5) 7	(23)	\$125.00	(39) 3	(62)	
				(63)	
(6) $1 \frac{7}{8}$		$61 \frac{25}{71}$	*(40) $453-499$	(64)	
(7) -1.024	(25)	15	(41) $-\frac{4}{3},-1 \frac{1}{3}$	(65)	5040
(8) 18.75	(26)	10	(42) 46854	(66)	1
(9) 23	(27)	4.6	(43) -5	(67)	73
${ }^{*}(10) 6228-6882$	(28)	-35	(44) 168	(68)	0
(11) $4 \frac{7}{12}$	(29)	15	(45) $1.5, \frac{3}{2}, 1 \frac{1}{2}$	(69)	7
(12) $1.5, \frac{3}{2}, 1 \frac{1}{2}$	*(30)	$\begin{aligned} & \text { 6,560,678 - } \\ & 7,251,274 \end{aligned}$	(46) 301	*(70)	$493-544$
(13) 225	(31)	1101	(47) 30	(71)	26
(14) 3375	(32)		(48) 9	(72)	2
(15) 134	(33)	183	(49) $6.4, \frac{32}{5}, 6 \frac{2}{5}$	(73)	4
(16) 16	(34)	240	*(50) 570-628	(74)	$\frac{2}{3}$
(17) 64			(51) 1	(75)	2
(18) 63			(52) 7290	(76)	-10
			(53) $\frac{7}{3}, 2 \frac{1}{3}$	(77)	872
			(54) 7	(78)	15
			(55) $\frac{1}{3}$	(79)	$\frac{19}{25}$
			(56) 6	*(80)	7569-8365
			(57) 24		
			(58) $1.5, \frac{3}{2}, 1 \frac{1}{2}$		

2009-10 TMSCA High School State Meet

(1) $1002-2010=$ \qquad
(2) $2010 \div 5=$ \qquad
(3) $2010 \times 11=$ \qquad
(4) $1212+2121=$ \qquad
(5) $\frac{4}{7} \times \frac{21}{22}=$ \qquad
(6) $4 \div 1 \frac{3}{5}=$ \qquad (mixed number)
(7) $\frac{5}{16}=$ \qquad \% (decimal)
(8) $55+(44-33) \times 22 \div 11=$ \qquad
(9) $27^{2}=$ \qquad
*(10) $11-2358+1321=$ \qquad
(11) $42 \times 24=$ \qquad
(12) $13^{3}=$ \qquad
(13) $2010 \div 9=$ \qquad (mixed number)
(14) 132 is 200% of \qquad
(15) $\frac{3}{4}$ of a peck is equivalent to \qquad quarts
(16) Which is larger, $1 \frac{5}{12}$ or 1.45 ? \qquad
(17) $\mathrm{MI}+\mathrm{DV}-\mathrm{CX}=$ \qquad (Arabic Number)
(18) The largest prime divisor of 355 is \qquad
(34) $\frac{8!}{5!4!}=$ \qquad
(35) Let $5 x-3=1$ then $4 x+2=$ \qquad
(36) The set $\{\mathrm{M}, \mathrm{A}, \mathrm{T}, \mathrm{H}\}$ has \qquad improper subsets
(37) How many positive integral divisors does 88 have?
(38) $\sqrt{175}+\sqrt{112}=\sqrt{x}$. Find x.
(39) $10111_{2}=$ \qquad 8
*(40) $16 \times 48+24 \times 52=$ \qquad
(41) $\frac{57}{71}-\frac{7}{9}=$ \qquad
(42) The sum of the product of the roots taken three at a time of $x^{4}-2 x^{3}-13 x^{2}+14 x=-24$ is \qquad
(43) If $x+y=\frac{1}{3}$ and $x y=\frac{1}{9}$ then $x^{3}+y^{3}=$ \qquad
(44) If P is 75% of Q and R is $1 \frac{1}{2} Q$'s, then P is what percent less than R ? \qquad \%
(45) $312 \times 213=$ \qquad
(46) $\ldots, x, 0.6,1.1,1.6, y, \ldots$ is an arithmetic sequence. Find the value of $x+y$.
(47) $60^{\circ} \mathrm{F}=$ \qquad ${ }^{\circ} \mathrm{C}$
(48) The greatest integer x such that $4-3 x \geq 2 x+5$ is \qquad
(49) Find the geometric mean of 1,2 , and 32. \qquad
*(50) $222 \times 27.1 \times \frac{7}{12}=$ \qquad
(51) The line of symmetry of the parabola $y=x^{2}+6 x+13$ is $x=$ \qquad
(52) $10^{2}-9^{2}+8^{2}-7^{2}+\ldots+2^{2}-1^{2}=$ \qquad
(53) The largest number of regions created by 11 intersecting lines that are coplanar is \qquad
(54) $1345 \div 45=$ \qquad 5
(55) $\sin \left(\frac{\pi}{3}\right) \times \sec \left(\frac{\pi}{6}\right)=$ \qquad
(56) How much time has passed from 7:15 a.m. to 3:45 p.m. the same day? \qquad hours
(57) The 18th term of $3,8,13,18, \ldots$ is \qquad
(58). $(3-8 i)(3-8 i)=a+b i$. Find $a-b$.
(59) $\frac{5 \pi}{8}$ radians $=$ \qquad degrees
*(60) $\left(\frac{\sqrt{5}+1}{2}\right)^{2}(e)^{2}(\pi)^{2}=$ \qquad
(61) The probability of winning tournament A is $\frac{7}{12}$. The odds of losing tournament A is \qquad
(62) ${ }_{6} \mathrm{P}_{3}+{ }_{6} \mathrm{C}_{3}=$ \qquad
(63) M varies inversely with N^{2} and $M=3$ when $\mathrm{N}=5$. If $\mathrm{N}=\mathbf{1 0}$ then $\mathrm{M}=$ \qquad
(64) The sum of the coefficients of the $x y^{2}$ term and $x^{2} y$ term in the expansion of $(x-3 y)^{3}$ is \qquad
(65) Let $K=\sqrt{2}+\sqrt{3}+\sqrt{5}$. Truncate K to one decimal place. \qquad (decimal)
(66) $\left(456_{7}+654_{7}\right) \div 6$ has a remainder of \qquad
(67) If $\mathrm{A}=1.2 \mathrm{~B}$ and $\mathrm{A}=2 \mathrm{C}$ then $\mathrm{B}=$ \qquad $\%$ of C .
(68) $\sqrt{19044}=$ \qquad
(69) $\log 16 \div \log 4 \times \log 100=$ \qquad
*(70) The surface area of a sphere with a diameter of 9 inches is \qquad sq. inches
(71) The sum of the first 10 terms of the Fibonacci characteristic sequence $\mathbf{2 , 5 , 7 , 1 2 , 1 9 , . . . ~ i s ~}$ \qquad
(72) If $f(x)=\frac{3 x}{2 x+1}$, then $f^{-1}(-3)=$ \qquad
(73) If $\operatorname{det}\left|\begin{array}{cc}4 & 2 \\ 3 x & -5 x\end{array}\right|=1$, then $x=$ \qquad
(74) $\lim _{x \rightarrow 2}\left(\frac{x-2}{x^{2}+x-6}\right)=$ \qquad
(75) If $f(x)=x^{2}+x+1$, find $f(f(1))$.
(76) If $f(x)=\frac{5 x+3}{x-1}$, then $f^{\prime}(2)=$ \qquad
(77) The minimum value of $y=3 x^{2}+4 x$ is \qquad
(78) $\int_{-1}^{2}(1-x) d x=$ \qquad
(79) The slope of the line tangent to $x^{2}+y^{2}=4$ at $y=2$ is
*(80) 898 miles/hour = \qquad feet/second
(1) -1008
(2) 402
(3) 22110
(4) 3333
(5) $\frac{6}{11}$
(19) 265
(30) 1
*(20) 313584-346592
(21) $3 \frac{211}{990}$
(22) 10
(23) 24442
(24) 3
(25) 2025
(26) $132 \frac{12}{49}$
(27) 1010
(28) 47
(29) -1
*(30) 8267-9136
(31) 6
(32) 300
(33) 108
(34) 14
(35) $5.2, \frac{26}{5}, 5 \frac{1}{5}$
(17) 1396
(18) 71
(37) 8
(38) 567
(39) 27
*(40) 1916-2116
(41) $\frac{16}{639}$
(42) -14
(43) $-\frac{2}{27}$
(44) 50
(45) 66456
(46) $2.2, \frac{11}{5}, 2 \frac{1}{5}$
(47) $\frac{140}{9}, 15 \frac{5}{9}$
(48) -1
(49) 4
*(50) 3334-3684
(51) -3
(52) 55
(53) 67
(54) 21
(55) 1
(56) $8.5, \frac{17}{2}, 8 \frac{1}{2}$
(57) 88
(58) -7
(59) $112.5, \frac{225}{2}, 112 \frac{1}{2}$
*(60) 182 - 200
(61) $\frac{5}{7}$
(62) 140
(63).75, $\frac{3}{4}$
(64) 18
(65) 5.3
(66) 0
(67) $\frac{500}{3}, 166 \frac{2}{3}$
(68) 138
(69) 4
*(70) 242-267
(71) 550
(72) $-\frac{1}{3}$
(73) $-\frac{1}{26}$
(74) $2, \frac{1}{5}$
(75) 13
(76) - 8
(77) $-\frac{4}{3}$
(78) $1.5, \frac{3}{2}, 1 \frac{1}{2}$
(79) 0
*(80) 1252-1382

The University Interscholastic League
 Number Sense Test • HS District 1 - 2010

Directions: Do not turn this page until the person conducting this test gives the signal to begin. This is a ten-minute test. There are 80 problems. Solve accurately and quickly as many as you can in the order in which they appear. ALL PROBLEMS ARE TO BE SOLVED MENTALLY. Make no calculations with paper and pencil. Write only the answer in the space provided at the end of each problem. Problems marked with a (*) require approximate integral answers; any answer to a starred problem that is within five percent of the exact answer will be scored correct; all other problems require exact answers.

The person conducting this contest should explain these directions to the contestants.
STOP -- WAIT FOR SIGNAL!
(1) $2210-1030=$ \qquad
(2) $\frac{7}{10} \times \frac{5}{14}=$ \qquad
(3) $326 \times 11=$ \qquad
(4) $\frac{5}{24} \div \frac{3}{4}=$ \qquad
(5) $36 \%=$ \qquad (proper fraction)
(6) $(2+3)-5 \div 6 \times 4=$ \qquad
(7) $17^{2}=$ \qquad
(8) $65 \times 56=$ \qquad
(9) $9^{3}=$
*(10) $3221+4021-5112=$
(11) $4 \frac{5}{6}-2 \frac{7}{12}=$ \qquad (mixed number)
(12) The GCD of 52 and 78 is $=$ \qquad
(13) 225 is $\mathbf{1 5 0} \%$ of \qquad
(14) $\mathrm{CXI}+\mathrm{XLIV}=$ \qquad (Arabic Number)
(15) $3 \frac{3}{4}$ pecks is equivalent to \qquad quarts
(16) The number of positive prime integers that divide 76 is?
(17) Which is larger, $-2 \frac{2}{5}$ or -2.35 . \qquad
(18) The arithmetic mean of $10,15,12,13,13,12$, $10, \& 14$ is $=$ \qquad (decimal)
(19) $7+12+17+22+\ldots+47=$ \qquad
*(20) $\sqrt{8679}=$ \qquad
(21) $0.120120120 . . .=$ \qquad (proper fraction)
(22) Which of the following is both a composite and an abundant number, 42,43 , or 44 ? \qquad
(23) Truncate $(\sqrt{2})(\sqrt{3})$ to the tenths place.
(24) A number squared gives the same results as half of it cubed. What is the number? \qquad
(25) If $f(x)=x^{2}+8 x+16$ then $f(26)$ is \qquad
(26) $0.08333 \ldots+0.41666 \ldots-0.58333 \ldots=$ \qquad
(27) $|-1-1|-|2-3|-5|8|=$ \qquad
(28) The product of the roots of $3 x^{2}+8 x=3$ is \qquad
(29) 223355 k is divisible by 9 . Find k. \qquad
*(30) $6543 \times 876=$ \qquad
(31) The diagonal of a square is $3 \sqrt{5}$ inches. The area of this square is \qquad square inches
(32) Find k if $59^{2}-47^{2}=24 \mathrm{k} . k=$ \qquad
(33) $241_{6}-43_{6}=$ \qquad 6
(34) $5 \times 5!+35 \times 4!=$
(35) $11 \frac{7}{9} \times 11 \frac{2}{9}=$ \qquad (mixed number)
(36) $(9+15 \times 21) \div 8$ has a remainder of \qquad
(37) The largest number of regions created by nine intersecting lines is \qquad
(38) $\sqrt{108}-\sqrt{48}=\sqrt{x}$. Find x.
(39) Set A has 10 elements, B has 7 elements, and $A \cup B$ has 15 elements. $A \cap B$ has \qquad elements
*(40) $79.4 \div \frac{1}{9} \times 133 \frac{1}{3} \%=$ \qquad
(41) $12 \times 39+13 \times 34=$ \qquad
(42) The x -intercept of the line going through $(1,3)$ and $(3,5)$ is $(x, y), x=$
(43) If $x+y=\frac{1}{3}$ and $x y=3$ then $x^{3}+y^{3}=$ \qquad
(44) $221 \times 133=$ \qquad
(45) The greatest integer x such that $3 x+8<4$ is \qquad
(46) The sum of the product of the roots taken two at a time of $x^{4}+2 x^{3}-3 x^{2}-4 x=-4$ is \qquad
(47) Find the geometric mean of 4,6 , and 9. \qquad
(48) $111_{2}+222_{3}+333_{4}=$ \qquad 10
(49) $77^{\circ} \mathrm{F}=$ \qquad ${ }^{\circ} \mathrm{C}$
*(50) $248248 \div 121=$ \qquad
(51) $(3+4 i)(5-6 i)=(a+b i)$. Find $a+b$. \qquad
(52) Let $\log _{8}\left(x^{2}\right)=\frac{2}{3}$, where $x>0 . x=$ \qquad
(53) $1-2^{2}+3^{2}-4^{2}+5^{2}-\ldots-10^{2}=$ \qquad
(54) ${ }_{5} \mathrm{C}_{3}-{ }_{4} \mathrm{P}_{2}=$ \qquad
(55) $\sqrt{15129}=$ \qquad
(56) If two dice are rolled, the odds that the sum of the faces is 2,3 , or 12 is
(57) $\sin \left(\frac{5 \pi}{4}\right) \times \cos \left(\frac{5 \pi}{4}\right)=$ \qquad
(58) The number of distinct diagonals of a convex decagon is \qquad
(59) How much time has passed from 8:20 a.m. to 3:50 p.m. the same day? hours
*(60) $2.72^{(e)} \times 3.14^{(\pi)} \times 1.62^{(\phi)}=$ \qquad
(61) 480 miles $/$ hour $=$ \qquad feet/second
(62) $\left|\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right| \times\left|\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right|=\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|$. Find a - d.
(63) $\left(123_{5}+3215\right) \div 4$ has a remainder of \qquad
(64) If $\sec x=2$ then the value of $\tan ^{2} x$ is \qquad
(65) The greatest integer function $g(x)=[2 x-7]$ has a value of \qquad for $g(\sqrt{7})$
(66) $\log 125-\log 25+\log 5=\log$ \qquad
(67) The simplified coefficient of the $x^{2} y^{3}$ term in the expansion of $(2 x-y)^{5}$ is \qquad
(68) $(2!)(3!)(4!) \cong x(\bmod 8)$ and $0 \leq x \leq 7 . x=$ \qquad
(69) How many ways can Huey, Dewey, and Louie sit in a row of four chairs?
*(70) The surface area of a right cylinder with a radius of $3^{\prime \prime}$ and a height of $4^{\prime \prime}$ is \qquad sq. in.
(71) Given $3192 \div 11 \frac{1}{5}=285$. Find $3192 \div 56$. \qquad
(72) $F(x)=\log (3 x-2)$ has an asymptote at $x=$ \qquad
(73) If $f(x)=\sqrt{3+4 x}$, where $x, f(x) \in\{$ Reals $\}$ then the range of $f(x)$ is $\{f(x) \mid f(x) \geq$ \qquad
(74) If $\sin \theta=.8$ then $\cos \theta=$ \qquad in QIV
(75) $\sum_{0}^{2}(1-3 x)=$ \qquad
(76) $\int_{0}^{2}\left(x^{3}\right) d x=$ \qquad
(77) The minimum value of $y=x^{2}+2 x-3$ is \qquad
(78) $3434 \times 1001=$ \qquad
(79) Change .34 base 5 , to a base ten fraction. \qquad
*(80) 3.75 square miles $=$ \qquad acres
*number) $x-y$ means an integer between x and y inclusive
NOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal
(1) 1180
(17) $-2.35,-\frac{47}{20}$, $-2 \frac{7}{20}$
(18) 12.375
(19) 243
*(20) $89-97$
(21) $\frac{40}{333}$
(22) 42
(23) $2.4, \frac{12}{5}, 2 \frac{2}{5}$
(24) 8
(25) 900
(26) $-\frac{1}{12}$,
(11) $2 \frac{1}{4}$
(12) 26
(13) 150
(14) 155
(15) 30
(16) 2
(2) $.25, \frac{1}{4}$
(3) 3586
(4) $\frac{5}{18}$
(5) $\frac{9}{25}$
(6) $\frac{5}{3}, 1 \frac{2}{3}$
(7) 289
(8) 3640
(9) 729
*(10) $2024-2236$
(27) -39
(28) -1
(29) 7
*(30) $5,445,085-$
(31) $22.5, \frac{45}{2}, 22 \frac{1}{2}$
(32) 53
(57) . $5, \frac{1}{2}$
(33) 154
(34) 1440
(35) $132 \frac{14}{81}$
(36) 4
(37) 46
(38) 12
(39) 2
*(40) 906-1000
(41) 910
(42) -2
(43) $-\frac{80}{27},-2 \frac{26}{27}$
(44) 29393
(45) -2
(46) -3
(47) 6
(48) 96
(49) 25
*(50) $1950-2154$
(51) 41
(52) 2
(53) -55
(54) -2
(55) 123
(56) $\frac{1}{8}$
(58) 35
(59) $7.5, \frac{15}{2}, 7 \frac{1}{2}$
*(60) $1146-1266$
(61) 704
(62) -9
(63) 0
(64) 3
(65) -2
(66) 25
(67) - 40
(68) 0
(69) 24
*(70) $126-138$
(71) 57
(72) $\frac{2}{3}$
(73) 0
(74) $.6, \frac{3}{5}$
(75) -6
(76) 4
(77) -4
(78) $3,437,434$
(79) $\frac{19}{25}$
*(80) $2280-2520$

The University Interscholastic League
 Number Sense Test • HS District 2 • 2010

Contestant's Number
Read directions carefully
before beginning test
UNTIL TOLD TO BEGIN
Directions: Do not turn this page until the person conducting this test gives the signal to begin. This is a ten-minute test. There are
80 problems. Solve accurately and quickly as many as you can in the order in which they appear. ALL PROBLEMS ARE TO BE
SOLVED MENTALLY. Make no calculations with paper and pencil. Write only the answer in the space provided at the end of
each problem. Problems marked with a (${ }^{*}$) require approximate integral answers; any answer to a starred problem that is within
five percent of the exact answer will be scored correct; all other problems require exact answers.

The person conducting this contest should explain these directions to the contestants.
STOP -- WAIT FOR SIGNAL!
(1) $2010+201+20=$ \qquad
(2) $\$ 20.10 \div 5=$ \qquad
(3) $112-358=$ \qquad
(4) $\frac{8}{15} \times \frac{9}{10}=$ \qquad
(5) $1 \frac{3}{8} \div .0625=$ \qquad
(6) $2134711 \div 9$ has a remainder of \qquad
(7) $4 \div(5+6-7) \times 8=$ \qquad
(8) $44 \div 15+76 \div 15=$ \qquad
(9) $\frac{7}{16}=$ \qquad \% (decimal)
*(10) $7777-888+99=$ \qquad
(11) $729 \div 27=$ \qquad
(12) 9 is what \% of 180 ? \qquad $\%$
(13) $14^{3}=$ \qquad
(14) The LCM of 52 and 78 is $=$ \qquad
(15) $\mathbf{1 6 0}$ acres is equivalent to \qquad mile(s)
(16) The sum of the proper divisors of 80 is \qquad
(17) $\{x \mid 40<x<50, x \in\{$ Composites $\}\}$ contains how many elements? \qquad
(18) $2+5+8+\ldots+29=$ \qquad
(19) $3 \frac{3}{5}-1 \frac{2}{3}=$ \qquad (mixed number)
*(20) $\sqrt{359} \times \sqrt{445}=$ \qquad
(21) $69 \times \frac{69}{73}=$ \qquad (mixed number)
(22) Which of the following is an odious number, 63,31 , or $15 ?$ \qquad
(23) $232 \times 18=$ \qquad
(24) $3^{4}+2^{5}-4^{3}=k^{2} \cdot k=$ \qquad
(25) The $6^{\text {th }}$ hexagonal number is \qquad
(26) 80 has \qquad positive integral divisors
(27) $\mathbf{1 0 5}$ base ten is equivalent to \qquad base 5
(28) The set $\{s, q, u, a, r, e\}$ has \qquad 4-elements subsets
(29) 2583677 k is divisible by 11 . Find $k>0$. \qquad
*(30) $18 \times 54+27 \times 36=$ \qquad
(31) $2459 \div 79=$ \qquad 9
(32) $1+5+6+11+17+\ldots+73+118=$ \qquad
(33) $\frac{9!}{7!2!}=$ \qquad
(34) Given $9248 \div 34=272$. Find $9248 \div 8 \frac{1}{2}$. \qquad
(35) $12 \frac{12}{49} \div 3 \frac{3}{7}=$ \qquad (mixed number)
(36) If $4+x=3$, then $3 x+4=$
(37) Rectangle A is $8^{\prime \prime}$ by $10^{\prime \prime}$ and rectangle B is $5^{\prime \prime}$ by $6^{\prime \prime}$. The ratio of B's area to A's area is \qquad
(38) Round $\sqrt{8}+\sqrt{7}$ to a whole number.
(39) If $A \cap B$ has 8 elements, set B has 6 elements, and $A \cup B$ has 18 elements, then set A has elements.
*(40) $333 \times 23.8 \times \frac{5}{14}=$ \qquad
(41) $(34)^{2}-(21)(55)=$ \qquad
(42) $15^{\circ} \mathrm{C}=$ \qquad ${ }^{\circ} \mathrm{F}$
(43) If $x+y=-2$ and $x y=5$ then $x^{3}+y^{3}=$ \qquad
(44) If P is 30% of Q and Q is $\frac{1}{4}$ of R, then P is what percent of R ? \qquad $\%$
(45) The y-intercept of $6 x-2 y=8$ is $(x, y) . y=$ \qquad
(46) The harmonic mean of 2 and 8 is \qquad
(47) The sum of the product of the roots taken two at a time is $x^{3}+x^{2}-5 x+3=0$ is \qquad
(48) $1-4+9-16+25-36+\ldots-100=$ \qquad
(49) $\frac{59}{67}-\frac{10}{11}=$ \qquad
*(50) $300 \log 300=$ \qquad
(51) $0.444 \ldots \div 0.161616 \ldots=$
(52) The legs of a right \triangle are 5 and 12. The length of the altitude to the hypotenuse is \qquad
(53) $(\mathrm{i})^{36}=$ \qquad
(54) $\log _{6} \sqrt{216}=$ \qquad
(55) A convex polygon has 27 distinct diagonals. How many sides does it have?
(56) The next term of the geometric sequence $-2.5,1,-\frac{2}{5}, \ldots$ is \qquad (decimal)
(57) $\left(44_{7}+55_{7}\right) \div 6$ has a remainder of \qquad
(58) 225 degrees $=\frac{\pi}{k}$ radians. Find k. \qquad
(59) $U=\{x \mid-8<x<6, x \in\{$ Odd Integers $\}\}$ is the universal set and $\{-3,3\} \subset U$. How many elements are in $\{-3,3\}^{\prime}$?
*(60) $\boldsymbol{e}^{(3.14)} \times \pi^{(2.72)} \times \frac{\sqrt{5}+1}{2}=$ \qquad
(61) $\left(\cos \frac{\pi}{6}\right)\left(\cos \frac{\pi}{3}\right)-\left(\sin \frac{\pi}{6}\right)\left(\sin \frac{\pi}{3}\right)=$ \qquad
(62) How much time has passed from 10:24 a.m. to 1:15 p.m. the same day? minutes
(63) $f(x)=4 x-1$ and $g(x)=2+3 x . g\left(f\left(\frac{1}{2}\right)\right)=$ \qquad
(64) The sum of the coefficients of the $x y^{2}$ and the $x^{2} y$ terms in the expansion of $(x-y)^{3}$ is \qquad
(65) If $f(x)=\frac{2+3 x}{4}$, then $f^{-1}(-1)=$ \qquad
(66) The sum of the first 10 terms of the Fibonacci characteristic sequence $2,5,7,12,19, \ldots$ is \qquad
(67) $1(0!)+2(1!)+3(2!)+4(3!)+5(4!)=$ \qquad
(68) If $Z \div 101=212$, then $Z=$ \qquad
(69) M varies directly with N^{2} and $M=18$ when $\mathrm{N}=3$. If $\mathrm{N}=6$ then $\mathrm{M}=$ \qquad
*(70) 388 miles/hour = \qquad feet/second
(71) If $f(x)=\frac{4}{5 x+6}$, then $f^{-1}(-1)=$ \qquad
(72) $f(x)=\frac{x^{3}-3 x^{2}}{x^{2}-1}$ has how many asymptotes? \qquad
(73) $\sum_{1}^{3}(-x)^{x}=$ \qquad
(74) $\sqrt{7569}=$ \qquad
(75) The least value of k such that ${ }_{8} C_{k}=56$ is \qquad
(70) If $f(x)=2 x^{3}-3 x^{2}+4 x$, then $f^{\prime \prime}(1)=$ \qquad
(77) $\int_{1}^{3}(2 x-1) d x=$ \qquad
(78) The minimum value of $y=x^{2}+4 x$ is at $y=$ \qquad
(79) $234 \times 211=$ \qquad
*(80) 624 miles is equivalent to \qquad rods
*number) $x-y$ means an integer between x and y inclusive
NOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal

The University Interscholastic League
 Number Sense Test • HS Regional • 2010

Directions: Do not turn this page until the person conducting this test gives the signal to begin. This is a ten-minute test. There are 80 problems. Solve accurately and quickly as many as you can in the order in which they appear. ALL PROBLEMS ARE TO BE SOLVED MENTALLY. Make no calculations with paper and pencil. Write only the answer in the space provided at the end of each problem. Problems marked with a (*) require approximate integral answers; any answer to a starred problem that is within five percent of the exact answer will be scored correct; all other problems require exact answers.

The person conducting this contest should explain these directions to the contestants.
STOP -- WAIT FOR SIGNAL!
(1) $2010-424+508=$ \qquad
(2) $\frac{8}{25} \times \frac{15}{16}=$ \qquad
(3) $\$ 201.00 \div 2.5=\$$ \qquad
(4) $2 \frac{1}{3}+3 \frac{1}{5}=$ \qquad (mixed number)
(5) $48 \%=$ \qquad (proper fraction)
(6) $2010 \div 9$ has a remainder of \qquad
(7) $1-1 \div 2+3 \times 5=$ \qquad
(8) $31^{2}=$ \qquad
(9) $72 \times 27=$ \qquad
*(10) $11235+2134-162=$ \qquad
(11) 37.5% of 320 is \qquad
(12) $\operatorname{GCD}(15,48) \times \operatorname{LCM}(15,48)=$ \qquad
(13) $8 \times 18 \times 12=$ \qquad
(14) $1+5+9+13+\ldots+33=$ \qquad
(15) 2.25 pecks is equivalent to \qquad quarts
(16) The median of $85,78,92,88,90, \& 76$ is $=$ \qquad
(17) $12.34-56.7=$ \qquad (decimal)
(18) $\mathrm{DLV}+\mathrm{CXI}=$ \qquad (Arabic Number)
(19) $\{x \mid 20<x<40, x \in\{$ Primes $\}\}$ contains how many elements? \qquad
*(20) $\sqrt{94835}=$ \qquad
(21) $0.4333 \ldots=$ \qquad (proper fraction)
(22) $369 \times 101=$ \qquad
(23) Round $\sqrt{5} \div \sqrt{4}$ to the tenths place. \qquad
(24) The sum of x and four gives the same results as twice x less eight. What is the number? \qquad
(25) If $f(x)=x^{3}+9 x^{2}+27 x+27$ then $f(9)$ is \qquad
(26) The $11^{\text {th }}$ hexagonal number is \qquad
(27) $|-1+2|-|3+4|-5+|-6|=$ \qquad
(28) The sum of the product of the roots taken two at a time of $4 x^{4}-37 x^{2}+9 x=0$ is \qquad
(29) 14253 K is divisible by 6 , but not by 5 . K is \qquad
*(30) $24 \times 12+36 \times 72=$ \qquad
(31) The multiplicative inverse of 2.0625 is \qquad
(32) Find k if $87^{2}-73^{2}=80 k \cdot k=$ \qquad
(33) $2222_{8}-448=$ \qquad 8
(34) $35 \times 4!+3 \times 6!=$ \qquad
(35) $9 \frac{8}{11} \times 9 \frac{3}{11}=$ \qquad (mixed number)
(36) $(13 \times 16-19) \div 11$ has a remainder of \qquad
(37) Given $5940 \div 44=135$. Find $5940 \div 5 \frac{1}{2}$. \qquad
(38) $\sqrt{45}+\sqrt{180}=\sqrt{x}$. Find x. \qquad
(39) Set A has 12 elements, B has 14 elements, and $A \cap B$ has 5 elements. $A \cup B$ has \qquad elements
*(40) $727272 \div 111=$
(41) The legs of a right Δ are 9 and 40 . The length of the altitude to the hypotenuse is \qquad
(42) If P is 40% of Q and P is $\frac{3}{5}$ of R then Q is what percent greater than R ? \qquad $\%$
(43) If $x-y=\frac{1}{2}$ and $x y=3$ then $x^{3}-y^{3}=$ \qquad
(44) $113 \times 211=$ \qquad
(45) The greatest integer x such that
$4-3 x \geq 5$ is \qquad
(46) $\frac{2}{3}-\frac{101}{149}=$ \qquad
(47) The arithmetic mean of $0.4,1.5,2.6,3.7$, and 4.8 is \qquad (decimal)
(48) ..., $x, 0.5,-1,2, y, \ldots$ is a geometric sequence. Find the value of $x+y$. \qquad
(49) $11^{\circ} \mathrm{C}=$ ${ }^{\circ} \mathrm{F}$
*(50) $452 \times 25.4 \times \frac{2}{45}=$ \qquad
$(51)(144)^{2}-(89)(233)=$ \qquad
(52) The number of distinct diagonals of a convex dodecagon is \qquad
(53) $\sqrt{207936}=$ \qquad
(54) ${ }_{5} \mathrm{C}_{2}+{ }_{4} \mathrm{P}_{3}=$ \qquad
(55) How much time has passed from 5:50 a.m. to 11:10 p.m. the same day? \qquad hours
(56) (679 +789$) \div 8$ has a remainder of \qquad
(57) Let $\log _{16}(x-4)=\frac{3}{4} . \quad x=$
(58) $8^{2}-7^{2}+6^{2}-5^{2}+4^{2}-\ldots-1^{2}=$ \qquad
(59) The largest number of regions created by 12 intersecting lines that are coplanar is \qquad
${ }^{*}(60)(1.62)(2.72)(3.14)(\phi)(\boldsymbol{e})(\pi)=$ \qquad
(61) The slope of the line containing the points $(-1,5)$ and $(2,-3)$ is \qquad
(62) $\left(\sin \frac{\pi}{6}\right)\left(\cos \frac{\pi}{3}\right)-\left(\sin \frac{\pi}{3}\right)\left(\cos \frac{\pi}{6}\right)=$ \qquad
(63) $\left|\begin{array}{ll}7 & 3 \\ 5 & 1\end{array}\right| \times\left|\begin{array}{ll}2 & 6 \\ 4 & 8\end{array}\right|=\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|$. Find $b+c$.
(64) The odds of event A happening is $\frac{3}{5}$. The probability of A not happening is \qquad \%
(65) The greatest integer function $g(x)=[3 x+1]$ has a value of \qquad for $g(\sqrt{2})$
(66) 75 miles/hour $=$ \qquad feet/second
(67) $\log 27 \div \log 3 \times \log 1000=$ \qquad
(68) If $[(2!)+(3!)+(5!)] \cong x(\bmod 6)$ and $0 \leq x \leq 5$, then $x=$ \qquad
(69) If $f(x)=\frac{5-3 x}{2}$, then $f^{-1}(1)=$ \qquad
*(70) 4 rods 3 yards 2 feet $=$ \qquad inches
(71) $1(1!)+2(2!)+3(3!)+\ldots+6(6!)=$ \qquad
(72) If $f(x)=x^{2}-x-2$, then $f(f(-1))=$ \qquad
(73) $f(x)=\sqrt{4 x-1}$ is a real value function. The domain of $f(x)$ is $\{x \mid x \in\{$ Reals $\}$ and $x \geq$ \}
(74) $\sum_{-1}^{2}\left[(-x)^{3}+x\right]=$ \qquad
(75) $\int_{1}^{2}(3-x) d x=$ \qquad
(76) The sum of the first 10 terms of the Fibonacci characteristic sequence $\mathbf{4 , 5 , 9 , 1 4 , 2 3 , \ldots \text { .. is }}$ \qquad
(77) How many ways can Donald and his 3 nephews sit in a row of 5 chairs? \qquad
(78) $0.111 \ldots+0.1666 \ldots+0.333 \ldots=$ \qquad
(79) Change .55 base 6 , to a base ten fraction.
*(80) 1800 feet $=$ \qquad rods

University Interscholastic League - Number Sense Answer Key HS • Regional • 2010 *number) $x-y$ means an integer between x and y inclusive
NOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal
(1) 2094
(19) 4
*(20) 293-323
(21) $\frac{13}{30}$
(22) 37269
(23) 1.1
(24) 12
(25) 1728
(26) 231
(27) -5
(28) $\begin{aligned} & -9.25,-\frac{37}{4}, \\ & -9 \frac{1}{4}\end{aligned}$
(29) 6
*(30) 2736-3024
(31) $\frac{16}{33}$
(32) 28
(33) 156
(34) 3000
(17) -44.36
(18) 666
(35) $90 \frac{24}{121}$
(36) 2
(37) 1080
(38) 405
(39) 21
*(40) 6225-6879
(41) $\frac{360}{41}, 8 \frac{32}{41}$
(42) 50
(43) $4.625, \frac{37}{8}, 4 \frac{5}{8}$
(44) 23843
(45) -1
(46) $-\frac{5}{447}$
(47) 2.6
(48) $-4.25,-\frac{17}{4}$,

$$
-4 \frac{1}{4}
$$

(49) $51.8, \frac{259}{5}, 51 \frac{4}{5}$
*(50) 485-535
(51) -1
(52) 54
(53) 456
(54) 34
(55) $\frac{52}{3}, 17 \frac{1}{3}$
(56) 4
(57) 12
(58) 36
(72) -2
(73) $.25, \frac{1}{4}$
(74) -6
(75) $1.5, \frac{3}{2}, 1 \frac{1}{2}$
(76) 660
(59) 79
*(60) 182-200
(61) $-\frac{8}{3},-2 \frac{2}{3}$
(62) $-.5,-\frac{1}{2}$
(63) 80
(64) $62.5, \frac{125}{2}, 62 \frac{1}{2}$
(65) 5
(66) 110
(67) 9
(68) 2
(69) 1
*(70) 878-970
(71) 5039
(77) 120
(78) $\frac{11}{18}$
(79) $\frac{35}{36}$
*(80) $104-114$

