The University Interscholastic League Number Sense Test • HS SAC • 2009

		Final		
Contestant's Number		2nd		
		1st		
Read directions carefully before beginning test	DO NOT UNFOLD THIS SHEET UNTIL TOLD TO BEGIN		Score	Initials

Directions: Do not turn this page until the person conducting this test gives the signal to begin. This is a ten-minute test. There are 80 problems. Solve accurately and quickly as many as you can in the order in which they appear. ALL PROBLEMS ARE TO BE SOLVED MENTALLY. Make no calculations with paper and pencil. Write only the answer in the space provided at the end of each problem. Problems marked with a (*) require approximate integral answers; any answer to a starred problem that is within five percent of the exact answer will be scored correct; all other problems require exact answers.

The person conducting this contest should explain these directions to the contestants.

STOP -- WAIT FOR SIGNAL!

(1) 2010 + 2009 =	(19) $\frac{1}{4}$ ton is equivalent to ounces
(2) 2009 × 11 =	*(20) 235 × 146 =
(3) 9002 - 2010 =	(21) 0.323232 = (proper fraction)
(4) $2010 \div 25 = $ (decimal)	(22) Which of the following is both a happy and a perfect number, 7, 28, or 42?
(5) $\frac{1}{5} \div \frac{1}{15} =$ (mixed number) (6) $4 \times 2\frac{2}{3} =$ (mixed number)	(23) 30603 ÷ 101 =
(7) 16 % = (proper fraction)	(24) How many positive integral divisors does 64 have?
(8) $3 + (4 \times 5 - 6) \div 7 =$	(25) If $f(x) = x^2 - 10x + 25$ then $f(37)$ is
(9) $\frac{3}{8} =$ (decimal)	(26) If $4x + 3 = 2$ then $2x - 2 = $
*(10) 2009 + 2010 + 2910 =	(27) 86 base ten is equivalent to base 5
(11) 12 ² =	(28) The sum of the roots of $2x^2 + 3x = 5$ is
(12) 12 ³ =	(29) The area of a square is $12\frac{1}{4}$ square inches. The perimeter of this square is inches
(13) 24 is what % of 60?%	*(30) $\sqrt{488} \times 221 =$
(14) 32 × 23 =	(31) $(15 + 16 \times 17) \div 7$ has a remainder of
(15) $1 + 3 + 5 + \dots + 23 =$	(32) The multiplicative inverse of -1.25 is
(16) Which is larger, $\frac{11}{13}$ or $\frac{13}{16}$?	(32) The multiplicative inverse of -1.25 is (33) $ -1-1 + -2+3 - 5-8 =$
(17) 2010 ÷ 9 has a remainder of	$(34) 4 \times 4! - 12 \times 3! =$
(18) MCDLXIV = (Arabic Number)	

- (35) $2\frac{3}{5} \times 2\frac{2}{5} =$ _____ (mixed number)
- (36) The set {L, U, C, A, S} has ____ proper subsets
- $(37) \ 4^2 + 3^3 + 2^4 = _$
- (38) $\sqrt{243} \sqrt{75} = \sqrt{x}$. Find x.
- (39) If set A has 6 elements, set B has 5 elements, and A ∩ B has 4 elements, then A ∪ B has elements.
- *(40) 224488 ÷ 111 =
- (41) If P is 20% of Q and Q is 25% of R, then P is what percent of R? _____%
- (42) 113 × 212 =
- (43) If x + y = 2 and xy = 2 then $x^3 + y^3 =$ _____
- $(44) \ \frac{3}{4} \frac{10}{13} = _$
- (45) ..., $-1\frac{1}{3}$, $-\frac{2}{3}$, x, y, ... is an arithmetic sequence. Find the value of y.
- (46) $\frac{7}{40} =$ ______ % (decimal)
- (47) Find the harmonic mean of 2 and 5.
- (48) The least integer x such that 3 5x < 2 is _____
- (49) 95 °F = ____ °C
- *(50) $125 \times 37.5 \div \frac{5}{8} =$ _____
- (51) The probability of drawing a Queen or a King from a standard 52 card deck is _____
- (52) ${}_{5}P_{3} + {}_{5}P_{2} =$ _____
- (53) 45 degrees = $\frac{\pi}{k}$ radians. Find k. _____
- (54) (2 + 7i) (2 7i) = a + bi. Find a + b.
- (55) $\sin\left(\frac{\pi}{3}\right) \times \cos\left(\frac{\pi}{6}\right) =$
- (56) The vertex of the parabola $y = x^2 6x + 3$ is (h, k). Find h.
- (57) The eleventh term of 6, 11, 16, 21,... is _____
- (58) The largest number of regions created by five intersecting lines is _____
- $(59) \ 1 4 + 9 16 + 25 36 + \dots 64 =$ *(60) $e^{(e)} \times \pi^{(\pi)} =$ _____ (61) $44_8 \times 4_8 = 8$ (62) How much time has passed from 3:45 p.m. to 11:15 p.m. the same day? _____ hours (63) The slope of the line containing the points (-1, -2) and (3, 4) is _____ (64) The simplified coefficient of the xy^2 term in the expansion of $(2x + 3y)^3$ is _____ (65) The greatest integer function g(x) = [2x - 3]has a value of _____ for $g(\pi)$ (66) If $\log_x 8 + \log_x 8 = 3$ then x =_____ (67) $\sqrt{2809} =$ _____ (68) $(67_9 + 84_9) \div 8$ has a remainder of (69) If A is 125% of B and B is 120% of C then A is _____% greater than C. *(70) The area of $20x^2 + 45y^2 = 900$ is _____ (71) The sum of the first 9 terms of the Fibonacci characteristic sequence 1,4,5,9,14,23,... is _____ (72) If f(x) = 3x - 2, then $f^{-1}(-1) =$ (73) If det $\begin{vmatrix} -1 & -2 \\ 3 & x \end{vmatrix} = 5$, then x =_____ (74) $\lim_{x \to 3} \left(\frac{x^2 - 3x}{x - 3} \right) =$ _____ (75) The graph of $f(x) = 2^{(x-2)}$ has a horizontal asymptote at y = _____ (76) If $f(x) = \frac{3x-1}{2x+1}$, then f'(1) =_____ $(77) \ 1(1!) + 2(2!) + 3(3!) + 4(4!) =$ (78) $\int_{2}^{3} x^2 dx =$ (79) Given 5966 \div 38 = 157. Find 5966 \div 9 $\frac{1}{2}$. *(80) 3210 miles/hour = feet/second

University Interscholastic League - Number Sense Answer Key HS • SAC • Fall 2009 *number) x - y means an integer between x and y inclusive NOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal

(1) 4019	(19) 8000	(35) $6\frac{6}{25}$	(59) - 36
(2) 22099	*(20) 32595 - 36025	(36) 31	*(60) 525 - 580
(3) 6992	(21) $\frac{32}{99}$	(37) 59	(61) 220
(4) 80.4	(22) 28	(38) 48	(62) 7.5, $\frac{15}{2}$, $7\frac{1}{2}$
(5) 1.125, $\frac{9}{8}$, $1\frac{1}{8}$	(23) 303	(39) 7	(63) 1.5, $\frac{3}{2}$, $1\frac{1}{2}$
(6) $10\frac{2}{3}$	(24) 7	*(40) 1922 - 2123	(64) 54
(7) $\frac{4}{25}$	(25) 1024	(41) 5	(65) 3
(8) 5	$(26) - 2.5, -\frac{5}{2},$	(42) 23956	(66) 4
(9) .375	$-2\frac{1}{2}$	(43) - 4	(67) 53
*(10) 6583 - 7275	(27) 321	$(44) - \frac{1}{52}$	(68) 1
(11) 144	$(28) - 1.5, -\frac{3}{2}, \\ -1^{\frac{1}{2}}$	(45) $\frac{2}{3}$	(69) 50
(12) 1728	$-\frac{1}{2}$	(46) 17.5	*(70) 90 - 98
(12) 1720	(29) 14	(47) $\frac{20}{7}, 2\frac{6}{7}$	(71) 250
(14) 736	(30) 4038 - 5120	(48) 1	(72) $\frac{1}{3}$
(15) 144	(31) 0	(49) 35	(73) 1
$(16) \frac{11}{12}$	$(32)8, -\frac{1}{5}$	*(50) 7125 - 7875	(74) 3
(17) 3	(33) 0	(51) $\frac{2}{13}$	(75) 0
(18) 1464	(34) 24	(52) 80	(76) $\frac{5}{9}$
()		(53) 4	(77) 119
		(54) 53	(78) $\frac{19}{3}, 6\frac{1}{3}$
		(55) .75, $\frac{3}{4}$	(79) 628
		(56) 3	*(80) 4473 – 4943
		(57) 56	

(58) 16

*

The University Interscholastic League Number Sense Test • HS Invitational A • 2010

		Final		
Contestant's Number		2nd		
		1st		
Read directions carefully before beginning test	DO NOT UNFOLD THIS SHEET UNTIL TOLD TO BEGIN		Score	Initials

Directions: Do not turn this page until the person conducting this test gives the signal to begin. This is a ten-minute test. There are 80 problems. Solve accurately and quickly as many as you can in the order in which they appear. ALL PROBLEMS ARE TO BE SOLVED MENTALLY. Make no calculations with paper and pencil. Write only the answer in the space provided at the end of each problem. Problems marked with a (*) require approximate integral answers; any answer to a starred problem that is within five percent of the exact answer will be scored correct; all other problems require exact answers.

The person conducting this contest should explain these directions to the contestants.

(1) $210 + 21 - 2010 = $	(17) The greatest prime number less than 99 is
(2) $\frac{3}{8} \times \frac{4}{9} =$	(18) 11 ³ =
(3) $\$20.10 \div 3 = \$$	(19) MMX ÷ V = (Arabic Numeral)
(4) $2.01 - 2\frac{1}{10} + 21 = $ (decimal)	*(20) $\sqrt{1243} \times 3421 =$
(5) $\frac{4}{9} \div .3 =$	(21) 66% of 44 is 22% of
(6) 44 % = (proper fraction)	(22) Which of the following is both a composite number and an evil number, 4, 9, or 11?
(7) $9 \times 6 \div 3 - 6 + 9 =$	(23) 235 × 14 =
(8) 34 × 43 =	(24) 48 has positive integral divisors
(9) $63 \times 15 - 82 \times 15 =$	(25) 10 plus x is the same as tripling x. $x =$
*(10) $753 - 936 + 842 =$	(26) Let $k = \sqrt{7} + \sqrt{5}$. Truncate k to two decimal places. (decimal)
(12) If 8 ounces of M&M's costs \$1.10 then $1\frac{1}{2}$ pounds of M&M's will cost \$	 (27) .3331666 + .08333 = (28) (26 × 24 − 22) ÷ 7 has a remainder of
(13) The GCD of 48 and 57 is	(29) 25836k is divisible by 6. Find k > 0
(14) (58 + 79 + 66) ÷ 4 has a remainder of	*(30) 30456 ÷ 141 =
(15) $2\frac{1}{2}$ bushels is equivalent to pecks	(31) If set A has 6 elements, A ∩ B has 3, and A ∪ B has 9, then set B has elements.
(16) The median of 1, 5, 2, 3, 3, 2, 1, & 4 is	(32) 2+1+3+4+7++47=

(33)	-6-1 + -5+2 - 4-3 =	(58) 8 intersecting lines create at most regions
(34)	$\sqrt{125} + \sqrt{20} = \sqrt{x}$. Find x	(59) $7^2 - 6^2 + 5^2 - 4^2 + \dots + 1 = $
(35)	The discriminant of $6x^2 + 7x + 2 = 0$ is	*(60) $8^3 \div 4^6 \times 2^{10} =$
(36)	Picture A is 8" by 10" and B is 9" by 12". The	(61) (66 9)(77 9) ÷ 8 has a remainder of
(27)	Find k if 67^2 $50^2 - 16k$ k -	(62) If $\log_5 x - \log_5 8 = 1$ then $x = $
(37)	$5 \times 51 \pm 20 \times 41 =$	(63) If A is $\frac{2}{3}$ of B and B is 60% of C then A is what
(30)	5 × 5! + 20 × 4!	fractional part of C? (proper fraction)
(39)	$7\frac{4}{9} \times 7\frac{5}{9} =$ (mixed number)	(64) How many ways can Larry, Mo, and Curly sit in a row of five chairs?
*(40)	400 log 800 =	
(41)	$(13)^2 - (8)(21) =$	(65) The greatest integer function $g(x) = [3 - 2x]$ has a value of for $g(\pi)$
(42)	38 × 11 + 33 × 24 =	(66) $2! + 3! + 4! \cong x \pmod{5} \& 0 \le x \le 4$. $x = _$
(43)	If $x + y = -1$ and $xy = 2$ then $x^3 + y^3 = $	(67) $\sqrt{12544} =$
(44)	The x-intercept of the line 3x — 4y = 5 is (h, k). Find h	(68) $2 \sin 105^{\circ} \cos 105^{\circ} =$
(45)	The product of the roots of $x^4 + 2x^3 - 9x^2 - 2x + 8 = 0$ is	(69) $3 + 4 + 7 + 11 + 18 + 29 + + 123 = $
		*(70) The area of $40x^2 + 45y^2 = 1800$ is
(46)	$\frac{7}{20} - \frac{22}{59} = $	(71) If $f(x) = \frac{5x-2}{4x+3}$, then $f'(-1) =$
(47)	The arithmetic mean of 17, 22, and 25 is	(72) 1(1!) + 2(2!) + 3(3!) + + 6(6!) =
(48)	Given $1690 \div 26 = 65$. Find $1690 \div 5\frac{1}{5}$.	(73) Let $f(x) = \sqrt{3 - 4x}$ be a real valued function,
(49)	25 °C = °F	where $x \in \{\text{Reals}\}$. The domain of $f(x)$ is $\{x \mid x \leq ___\}$
*(50)	$833 \times 2.5 \div \frac{5}{12} =$	(74) $\int_{0}^{1} \sqrt{x} dx =$
(51)	The odds of drawing an ace from a standard 52 card deck is	(75) If h(x) is the slant asymptote of
		$f(x) = \frac{x^2 - 3x + 1}{x - 3}$, then $h(1) =$
(52)	The legs of a right \triangle are 8 and 15. The length of the altitude to the hypotenuse is	(76) If $f(x) = x^4 + x^2 - x$, then $f''(-3) =$
(53)	A convex octagon has distinct diagonals	(77) If $\csc \theta = 1.2$ then $\sin \theta =$
(54)	123 ₆ - 45 ₆ = 6	(78) $\lim_{x \to \infty} \left(\frac{\sin 3x}{2} \right) =$
(55)	(2-5i) (2-5i) = (a + bi). Find a.	$x \rightarrow 0 (x \rightarrow)$
(56)	If $\log_2(7x + 4) = 5$ then $x = $	(79) $f(x) = 5x - 6$ and $g(x) = 3x - 4$. $f(g(2)) = $
(57)	The set {e,m,p,t,y} has 3—element subsets	*(80) 6666 feet/second = miles/hour

University Interscholastic League - Number Sense Answer Key HS • Invitation A • 2010 *number) x – y means an integer between x and y inclusive NOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal

(1) — 1779	(17) 97	(33) 9	(58) 37
(2) $\frac{1}{6}$	(18) 1331	(34) 245	(59) 28
(3) \$6.70	(19) 402	(35) 1	*(60) 122 - 134
(4) 20.91	*(20) 114581 – 126642	(36) $\frac{6}{7}$	(61) 0
(5) $\frac{40}{27}$, $1\frac{13}{27}$	(21) 132	(37) 63	(62) 40
(6) $\frac{11}{12}$	(22) 9	(38) 1080	(63) $\frac{2}{5}$
$(3) \frac{25}{25}$	(23) 3290	(39) $56\frac{20}{81}$	(64) 60
(7) 21	(24) 10	*(40) 1104 - 1219	(65) — 4
(9) - 285	(25) 5	(41) 1	(66) 2
*(10) 627 - 691	(26) 4.88	(42) 1210	(67) 112
(11) 289	(27) .25, $\frac{1}{4}$	(43) 5	$(68)5, -\frac{1}{2}$
(12) \$3.30	(28) 0	(44) $\frac{5}{3}, 1\frac{2}{3}$	(69) 318
(13) 3	(29) 6	(45) 8	*(70) 127 - 139
(14) 3	*(30) 206 - 226	$(46) - \frac{27}{1180}$	(71) 23
(15) 10	(31) 6	$(47) \frac{64}{211} 21\frac{1}{100}$	(72) 5039
(16) $25 \frac{5}{2} 2^{\frac{1}{2}}$	(32) 122	(47) 3, 213 (49) 225	(73) .75, $\frac{3}{4}$
(10) 2.3, 2, 2 2		(48) 323	$(74) \frac{2}{3}$
		(1 <i>2)</i> / / *(50) 4740 — 5247	(75) 1
		(50) $\frac{1}{12}$ (51) $\frac{1}{12}$	(76) 110

- (52) $\frac{120}{17}, 7\frac{1}{17}$ (77) $\frac{5}{6}$
- (53) 20 (78) 3
- (54) 34 (79) 4
- $(55) 21 \qquad \qquad ^{*}(80) \ 4318 4772$
- (56) 4
- (57) 10

The University Interscholastic League Number Sense Test • HS Invitational B • 2010

		Final	<u> </u>	
Contestant's Number		2nd		
		1st		
Read directions carefully	DO NOT UNFOLD THIS SHEET		Score	Initials
before beginning test	UNTIL TOLD TO BEGIN			

Directions: Do not turn this page until the person conducting this test gives the signal to begin. This is a ten-minute test. There are 80 problems. Solve accurately and quickly as many as you can in the order in which they appear. ALL PROBLEMS ARE TO BE SOLVED MENTALLY. Make no calculations with paper and pencil. Write only the answer in the space provided at the end of each problem. Problems marked with a (*) require approximate integral answers; any answer to a starred problem that is within five percent of the exact answer will be scored correct; all other problems require exact answers.

The person conducting this contest should explain these directions to the contestants.

(1) $3141 - 2718 + 1618 =$	(18) How many elements are in
(2) $\frac{3}{5} \div \frac{21}{25} =$	$\left\{ x \mid 30 < x < 40, \text{ where } x \in \{\text{Primes}\} \right\}?$
(3) \$15.15 × 4 = \$	(19) If a 6-pack of 12 oz. cans of soda costs \$4.50 then one 12 oz. can will cost \$
(4) $\frac{22}{25} = $ %	*(20) $\sqrt{678} \times \sqrt{1154} =$
(5) $1\frac{1}{6} \div .08333 =$	(21) 115% of 15 is
(6) $3.4 + 2\frac{3}{10} - 1 = $ (decimal)	(22) If $x - 4 = 2$, then $4x + 2 =$
(7) $77 \div 25 + 123 \div 25 =$	(23) 122 × 16 =
(8) 54 × 45 =	(24) Round $\sqrt{8} - \sqrt{2}$ to the tenths place.
(9) $8 \div 4 - 2 + 4 \times 8 =$	(25) What number multiplied by 12 and added to 33 gives the same results?
*(10) 2468 + 3579 + 1001 =	
(11) 14 ² =	(26) $8\frac{3}{11} \times 8\frac{3}{11} = $ (mixed number)
(12) 14 ³ -	(27) 1.777 – 1.555 + 1.333 =
	(28) 2 + 1 + 3 + 4 + 7 + + 47 + 76 =
(13) The LCM of 48 and 57 is	
(14) $(34 \times 56 - 78) \div 9$ has a remainder of	(29) 25836k is divisible by 8. Find $k > 0$.
(15) 1 acre is equivalent to square feet	*(30) 783209 ÷ 247 =
(16) The mode of 1, 3, 2, 3, 4, 2, 1, & 3 is	(31) $5! \times 6 + 6! \times 4 =$
(17) DLV × CXI = (Arabic Numeral)	$(32) -8 -1+ 4 -3 -2-5 = _$

(33)	Which of the following numbers is both abundant and unlucky, 24, 25, or 28?	(57) The complex conjugate of $3 + 4i$ is $3 + $ i.
(34)	$\sqrt{192} - \sqrt{75} = \sqrt{x}$ Find x	$(58) 888 \times \frac{24}{37} = _$
(35)	The discriminant of $4x^2 + 19x - 2 = 0$ is	$(59) 2^2 + 1^2 + 3^2 + 4^2 + 7^2 = _$
(36)	Set A has 8 elements, set B has 12, $A \cap B$ has 5, and $A \sqcup B$ has k. Find k.	*(60) $(3.1\pi)(2.7e)\left(\frac{1+\sqrt{5}}{2}\right) = $
(27)		(61) (65 g) + (54 g) \div 7 has a remainder of
(37)	Find k if $74^2 - 66^2 = 8K$. k =	(62) If $\log_4 2x + \log_4 3 = 2$ then $x = $
(38)	12 is to 18 as 15 is to (decimal)	(63) $1.5P = \frac{1}{5}Q$ and 40% of $Q = R$. R is% of P.
(39)	The sum of the positive integral divisors of 108 is	(64) How many ways can Snow White and the seven dwarfs be seated at the round table?
*(40)	16 × 16 × 16 × 16 =	(65) The greatest integer function $g(\mathbf{x}) = \begin{bmatrix} 1 & \mathbf{y} \end{bmatrix}$
(41)	The slope of the line $6x + 2y = 8$ is	has a value of for $g(\sqrt{3})$
(42)	28 × 45 15 × 34 =	(66) $\frac{5!}{2!+3!} \cong x \pmod{7} \& 0 \le x \le 6. x =$
(43)	40 °C = °F	(67) $\sqrt{42436} =$
(44)	$(34)^2 - (21)(55) =$	(68) $\cos^2(150^\circ) - \sin^2(150^\circ) =$
(45)	The sum of the product of the roots taken two	$(69) \ 2+5+8+11+14++44 = _$
	at a time of $x^4 - 2x^3 - 13x^2 + 14x = -24$ is	*(70) The volume of a sphere with a diameter of
(46)	$\frac{3}{5} - \frac{25}{39} =$	12 cm iscu. cm
(47)	The geometric mean of 8, 25, and 40 is	(71) If $f(x) = \frac{2x+3}{x-4}$, then $f'(5) =$
(48)	Given 1190 ÷ 34 = 35. Find 1190 ÷ 4.25.	$(72) \ 4(4!) - 3(3!) - 2(2!) - 1(1!) = _$
(49)	If $x - y = 3$ and $xy = 3$ then $x^3 - y^3 = $	(73) The slope of the line tangent to $y = 3x^2 - x + 2$ at (1, 4) is
*(50)	$798 \times 1.0625 \div \frac{17}{20} =$	(74) $\int_{-1}^{1} (x+1) dx =$
(51)	The probability of randomly selecting a vowel from the elements of {p, r, o, d, u, c, t} is	(75) If h(x) is the slant asymptote of $4x^2 + 5x + 6$ (1) h(x)
(52)	The legs of a right \triangle are 5 and 12. The length of the altitude to the hypotenuse is	$f(x) = \frac{4x + 5x + 3}{2x + 1}$, then $h(-3) =$
(53)	Find the next term of the geometric sequence $-1^{\frac{2}{2}}$, $\frac{2}{\frac{2}{2}}$, $-\frac{4}{\frac{4}{2}}$, $\frac{1}{\frac{2}{2}}$, $\frac{1}{\frac{2}{$	$(76) \sum_{0} (2x - 1) =$
	· · · · · · · · · · · · · · · · · · ·	(77) $f(x) = 7 - 3x$ and $g(x) = 6 + 2x$. $f(g(-1)) = $
(54)	222 4 33 4 = 4	(78) 4141 × 1001 =
(55)	(4 - 7i) (4 + 7i) = (a + bi). Find $a + b$.	(79) Change .33 base 6 to a base ten decimal.
(56)	If $\log_{16}(4x) = \frac{3}{4}$ then $x =$	*(80) 5300 inches/second = miles/hour

University Interscholastic League - Number Sense Answer Key HS • Invitation B • 2010 *number) x - y means an integer between x and y inclusive NOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal

(1)	2041 (18)	2	(33) 24	(57)	— 4
(2)	$\frac{5}{7}$ (19)	\$.75	(34) 27	(58)	576
(3)	\$60.60 *(20)	841 — 928	(35) 393	(59)	79
(4)	88 (21)	17.25, $\frac{69}{4}$, $17\frac{1}{4}$	(36) 15	*(60)	110 — 121
(5)	14 (22)	26	(37) 140	(61)	6
(6)	4.7 (23)	1952	(38) 22.5	(62)	$\frac{8}{3}$, $2\frac{2}{3}$
(7)	8 (24)	1.4, $\frac{7}{5}$, $1\frac{2}{5}$	(39) 280	(63)	300
(8)	2430 (25)	3	*(40) 62260 - 68812	(64)	5040
(9)	32 (26)	$72\frac{24}{121}$	(41) - 3	(65)	— 1
*(10)	6696 - 7400 (27)	$\frac{14}{9}, 1\frac{5}{9}$	(42) 750	(66)	3
(11)	196 (28	198	(43) 104	(67)	206
(12)	2744 (29) 8	(44) 1	(68)	.5, $\frac{1}{2}$
(13)	912 *(30) 3013 — 3329	(45) - 13	(69)	345
(14)	8 (31)	3600	$(46) - \frac{\sigma}{195}$	*(70)	860 — 950
(15)	43560 (32)) — 10	(47) 20	(71)	- 11
(16)	3		(48) 280	(72)	73
(17)	61605		(49) 54	(73)	5
			*(50) 948 - 1047	(74)	2
			(51) $\frac{2}{7}$	(75)	$-4.5, -\frac{9}{2},$
			$(52) \ \frac{60}{13}, \ 4\frac{8}{13}$		$-4\frac{1}{2}$
			(53) $\frac{8}{75}$	(76)	8
			(54) 123	(77)	— 5
			(55) 65	(78)	4145141
			(56) 2	(79)	$\frac{7}{12}$

*(80) 287 - 316

(1)	102 - 9002 =	(18) 1764 = 42 ×
(2)	25 × 2010 =	(19) 2 rods is equivalent to feet
(3)	20.09 + 2.010 = (decimal)	*(20) $\sqrt{7766} =$
(4)	$\frac{5}{7} \div \frac{15}{28} =$	(21) $73 \times \frac{73}{75} =$ (mixed number)
(5)	2010 \div 11 has a remainder of	(22) Which of the following is both a prime number
(6)	$5\frac{2}{3} + 4\frac{3}{4} = $ (mixed number)	and an odious number, 5, 7, or 9?
(7)	$(-8.75) \div (2.5) = $ (decimal)	(23) If 3 keys cost \$1.25 then 15 keys cost \$
(8)	$\frac{1}{1}$ = 0/	(24) 756453 ÷ 4 has a remainder of
(9)	12 - 76 $24^2 = - 76$	(25) What number subtracted from 24 and multiplied by 5, gives the same results?
*(10)	4554 - 5665 - 6776 =	(26) The 11 th triangular number is
(11)	$20 \div (16 - 12) + 8 \times 4 =$	(27) Let $k = \sqrt{2} + \sqrt{3}$. Truncate k to two decimal places. (decimal)
(12)	1 yard \times 2 yards \times 3 yards = cubic feet	(28) -6-5 + -4+3 - 2 - 1 =
(13)	$3\frac{4}{5} - 8\frac{9}{10} = $ (mixed number)	(20) The set (6 - +) }
(14)	12 ³ =	(29) The set {I,o,r,t,y} has 4-elements subsets
(15)	DLV + MCDLV = (Arabic Numeral)	*(30) 959 × 626 =
(16)	The LCM of 16, 24, and 32 is	$(31) \ 45_6 + 53_6 = \6$
(17)	The number of positive prime integers that	(32) If $8 - x = 3$, then $3x - 8 =$
()	divide 60 is	(33) 12 + 32 + 42 + 72 + 112 =
·		$(34) \ 3 \times 3! - 12 \times 4! = _$

(35)	$7\frac{1}{6} \times 7\frac{5}{6} =$	(mixed number)	(58)	The largest number of regions created by six intersecting lines is
(36)	$\{p,o,w,e,r\} \cup \{s,e,t\}$ has	distinct elements		. · ·
(37)	Find k if $43^2 - 39^2 = 81$. k =	(59)	$1 - 2^2 + 3^2 - 4^2 + 5^2 - \dots + 9^2 = _$
()	OX		*(60)	714.2857 × 246 =
(38)	If $\sqrt{5} - \sqrt{3} + \sqrt{x} =$	1 then x =	(61)	If $f(x) = 2x - 5$ and $g(x) = 4x + 3$
()			(01)	then $f(g(-1)) =$
(39)	If set A has 5 elements, se	et B has 4 elements,		
	and $A \cup B$ has 6 elements	, then the number of	(62)	How much time has passed from 8:20 a.m. to
	elements in $A \cap B$ is			5:15 p.m. the same day? hours
*(40)	$8\frac{1}{6}0/2 \times 173 \cdot (10/2)$		(63)	If A is 70% of B and B is 130% of C then A is
··(40)	$0\frac{1}{3}/0 \times 1/3 - 0\frac{1}{4}/0 = -$			% less than C.
(41)	The slope of the line $x + z$	2y = 4 is	(64)	If log 50 log 2 = 2 there are
(40)	000 . 110		(04)	$\lim_{x \to 0} \log_x 2 = 2 \lim_{x \to 0} x = $
(42)	$233 \times 112 =$		(65)	How many ways can Romeo and Juliet sit in a
(43)	If $x - y = -1$ and $xy = 2$	$x^{3} - x^{3} =$		row of four chairs?
		J	(66)	$\cos^2 300$ $\sin^2 300$ -
(44)	$11_4 + 22_4 + 33_4 = $	10	(00)	cos 50 — sin 50 -
(45)	If 4.5, 1.5, x, y, is a c	reometric sequence	(67)	$\sqrt{3844} =$
	then the value of y is			
. (10			(68)	$(53_6)(45_6) \div 5$ has a remainder of
(40)	The product of the roots $-3 + -2$ $-5 + 2$ of	01		1 3 14 11 19 61
	$x^{-} + x^{-} - 5x + 5 = 0$ is		(69)	$\begin{vmatrix} 2 & 4 \end{vmatrix} - \begin{vmatrix} 2 & 2 \\ 3 & 2 \end{vmatrix} = \begin{vmatrix} 2 & 0 \\ b & d \end{vmatrix}$. Find a - d.
(47)	Find the geometric mean	of 4 and 16.		
(40)	The lane (C. 114 A		*(70)	$31.41 \times e + 27.18 \times \pi =$
(48)	I ne legs of a right \triangle are of the altitude to the hum	5 and 12. The length	(71)	
	or the articude to the hyp		(/1)	The largest value of k such that ${}_{6}C_{k}$ = 15 is
(49)	40 °C =	•F	(72)	$\sqrt{x}-2$
			(12)	$\frac{1}{x \to 4} \frac{1}{x - 4} =$
*(50)	$19 \times 109 + 109 \times 21 = $		(73)	If $f(x) = \sqrt{2-5}$, where $f(x) = 0$.
(51)	The number of distinct d	iggonals of a convex	(75)	the range of $f(x)$ is $\{f(x) \mid f(x) > 0\}$
()	pentagon is			
		4	(74)	$\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} \times \frac{5}{6} =$
(52)	Given $8424 \div 36 = 234$. F	Find 8424 \div 7 $\frac{1}{5}$.		3
(53)	0.444151515		(75)	The graph of $f(x) = 3^{(\frac{z}{x})}$ has a horizontal
Xy				asymptote at y =
(54)	The simplified coefficient	t of the x ² y term in the	(76)	If $f(x) = \frac{4x+3}{4x+3}$ then $f(x)$
	expansion of $(x - 3y)^3$ is		(79)	$11 1(x) - \frac{1}{2x-1}$, then $1^{-}(1) = $
(55)	$\sin\left(\frac{\pi}{2}\right) \div \cos\left(\frac{5\pi}{2}\right) =$		(77)	1(1!) + 2(2!) + 3(3!) + + 5(5!) =
	(3). 000(6)		,	1
(56)	If $\log_4(2^x) = 3$ then $x =$		(78)	$\int_{0}^{1} (-x)^{3} dx = $
(57)	$(21)^2 - (13)(24) =$			
(37)	(21) - (13)(34) =		(79)	Change .22 base 4, to a base ten decimal.
			*(80)	4444 feet/second = miles/hour

2009-10 TMSCA High School Number Sense Test 6 - Answer Key *number) x – y means an integer between x and y inclusive NOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal

(1) - 8900	(18) 42	(35) $56\frac{5}{36}$	(58) 22
(2) 50250	(19) 33	(36) 7	(59) 45
(3) 22.1	*(20) 84 - 92	(37) 41	*(60) 166929—
(4) $\frac{4}{3}, 1\frac{1}{3}$	(21) $71\frac{4}{75}$	(38) 169	184499
(5) 8	(22) 7	(39) 3	(61) - 7
(6) $10\frac{5}{12}$	(23) \$6.25	*(40) 220 - 242	(62) $\frac{83}{12}$, $6\frac{11}{12}$
(7) - 3.5	(24) 1	$(41) - 5 - \frac{1}{5}$	(63) 9
$(8) \frac{25}{8} \frac{81}{8}$	(25) 4	(42) 26006	(64) 5
(0) $\frac{3}{3}, \frac{3}{3}$	(26) 66	(42) 20090	(65) 12
(9) 5/6	(27) 3.14	(43) = 7	(66) .5, $\frac{1}{2}$
(10) = 8281 = -7492	(28) 10	(47) 30	(67) 62
(11) 37	(29) 5	(45) 👼	(68) 2
(12) 162	*(30) 570318 - 630350	(46) - 3	(69) - 5
$(13) - 5\frac{1}{10}$	(31) 142	(47) 8	*(70) 163 - 179
(14) 1728	(32) 7	$(48) \ \frac{60}{13}, 4\frac{8}{13}$	(71) 4
(15) 2010	(33) 196	(49) 104	(72) .25, $\frac{1}{4}$
(16) 96	(34) - 270	*(50) 4142 - 4578	(73) 0
(17) 3	(34) - 2/0	(51) 5	$(74) \frac{1}{2}$
		(52) 1170	
		(53) $\frac{29}{99}$	(75) 1
		(54) — 9	(76) - 10
		(55) — 1	(77) 719
		(56) 6	$(78) - \frac{1}{4}$
		(57) — 1	(79) .625

*(80) 2879 - 3181

*

- -

(1) 15 × 222 =	(19) A half mile is equivalent to rods
(2) 2345 + 3210 =	*(20) $\sqrt{19283} =$
(3) 135 - 246 =	(21) 12 × 345 =
(4) $2010 \div 25 =$	(22) One-third of what number gives the same
(5) 192837 ÷ 11 has a remainder of	results as that number minus 6?
(6) $4\frac{1}{8} - 2\frac{1}{4} = $ (mixed number)	(23) If 4 CDs cost \$50.00 then 10 CDs cost \$
(7) $(-3.2) \times (0.32) =$ (decimal)	(24) $66 \times \frac{66}{71} = $ (mixed number)
(8) $\frac{3}{16} = $ % (decimal)	(25) Which of the following is an evil number, 11, 13, or 15?
(9) $15 \div (12 - 9) + 6 \times 3 =$	(26) The total number of 1-element subsets and
*(10) 6879 - 345 + 21 =	4-element subsets of the set {r,o,u,n,d} is
(11) $1\frac{2}{3} \times 2\frac{3}{4} = $ (mixed number)	(27) Let $k = \sqrt{5} + \sqrt{6}$. Truncate k to one decimal place(decimal)
(12) 2 feet 8 inches + 1 foot 10 inches = yards	$(28) -1 -1 + -2 + 3 - 5 \cdot -8 = _$
(13) $15^2 =$	(29) The 3 rd hexagonal number is
(14) $15^3 =$	*(30) 8888 × 777 =
(15) MMX \div XV = (Arabic Numeral)	(31) $123_4 \times 3_4 = $ 4
(16) The GCF of 32, 48, and 96 is	(32) If $3x + 5 = 1$, then $6x - 1 =$
(17) The sum of the proper divisors of 76 is	$(33) 1^2 + 5^2 + 6^2 + 11^2 = _$
(18) 63 = 3969 ÷	$(34) 5 \times 4! + 20 \times 3! = _$
	1

- (35) $10\frac{3}{5} \times 5\frac{4}{5} =$ _____ (mixed number) (36) $\{l,i,n,e\} \cap \{s,l,o,p,e\}$ has ______ distinct elements (37) Find k if $53^2 - 57^2 = 4k$. k = _____ (38) If $\sqrt{4 - \sqrt{2 + \sqrt{x - 1}}} = 1$ then x =_____ (39) The units digit of 7⁷ is _____ *(40) $16\frac{2}{3}\% \times 238 \div \frac{1}{12} =$ _____ (41) The slope of the line containing the points (-2, 3) and (4, -5) is _____ (42) 114 × 411 = _____ (43) The sum of the product of the roots taken two at a time of $x^3 + x^2 - 5x + 3 = 0$ is _____ $(44) \ 1111_4 + 222_5 + 33_6 = ____10$ (45) If ..., 2.4, x, 0.6, y, ... is a geometric sequence, then the value of x + y is _____ (46) If x + y = 7 and xy = 2 then $x^3 + y^3 = 1$ (47) 86 °F = _____ °C (48) One leg of a right \triangle is 40 and the hypotenuse is 41. The length of the other leg is _____ (49) Find the harmonic mean of 4 and 16. *(50) $5380 \div 18 + 6602 \div 22 =$ _____ $(51) \ (89)^2 - (55)(144) = _$ (52) Given $648 \times 3\frac{3}{4} = 2430$. Find 648×11.25 . (53) 0.212121... ÷ .090909... = (54) A convex polygon has 14 distinct diagonals. How many sides does it have? _____ (55) $\tan\left(\frac{\pi}{6}\right) \times \cot\left(\frac{\pi}{3}\right) =$ (56) If $\log_9(3^x) = 3$ then x = _____ (57) The simplified coefficient of the x^2y^2 term in the expansion of $(2x + y)^4$ is _____ (58) If $(4 + 3i) \div 2i = a + bi$, then a = -2i
 - (59) $_{6}P_{3} _{6}C_{3} =$ _____ *(60) 857.142 × 279.2 = _____ (61) If f(x) = 5 - 2x, then $f^{-1}(3) =$ (62) How much time has passed from 11:35 a.m. to 2:25 p.m. the same day? _____ minutes (63) If P is $\frac{3}{4}$ of Q and Q is $\frac{2}{3}$ of R then R is what percent of P? _____% (64) If $\log_x 50 + \log_x 8 = 2$ then x =_____ (65) How many words, real or imaginary, can be made from the letters C,A,L,C,U,L,U,S ? _____ (66) $\cos^2\left(\frac{3\pi}{2}\right) + \sin^2\left(\frac{3\pi}{2}\right) =$ _____ (67) $\sqrt{5329} =$ _____ (68) $(87_{11})(79_{11}) \div 10$ has a remainder of _____ (69) $\begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 1 \\ 3 & 4 \end{vmatrix} = \begin{vmatrix} a & c \\ b & d \end{vmatrix}$. Find b + c. *(70) $(3.14)^{e} \times (2.718)^{\pi} =$ _____ (71) $\sum_{1}^{4} x^{2} - 1 =$ _____ (72) $\lim_{x \to 5} \frac{x^2 - 8x + 15}{x - 5} =$ (73) Set $U = \{x \mid x \in \{\text{Integers}\}, -3 < x < 5\}$ is the universal set and set $A = \{0,1,2\}$. How many elements are in set A' ? (74) The probability of rolling a factor of 6 on a single die is _____ (75) $f(x) = \frac{3-4x}{x-5}$ has how many asymptotes? (76) If $f(x) = x^2 - 8x + 15$, then f'(-1) = $(77) \ 2(1!) + 3(2!) + 4(3!) + 5(4!) + 6(5!) = _$ (78) $\int_{-1}^{4} (2x) dx =$ _____ (79) Change .34 base 5, to a base ten fraction.
 - *(80) 5432 miles/hour = _____ feet/second

009-10 TMSCA High School Number Sense Test 13- Answer Key number) x - y means an integer between x and y inclusive OTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal

(1) 3330	(19)	160	(35)	$61\frac{12}{25}$	(59)	100
(2) 5555	*(20)	132 — 145	(36)	2	*(60)	227349
(3) -111	(21)	4140	(37)	— 110	((1)	251279
(4) 80.4, $\frac{402}{5}$, $80\frac{2}{5}$	(22)	9	(38)	50	(10)	170
(5) 7	(23)	\$125.00	(39)	3	(62)	200
(6) $1\frac{7}{8}$	(24)	$61\frac{25}{71}$	*(40)	453 499	(63)	200
(7) - 1.024	(25)	15	(41)	$-\frac{4}{3},-1\frac{1}{3}$	(65)	5040
(8) 18.75	(26)	10	(42)	46854	(65)	1
(9) 23	(27)	4.6	(43)	-5	(67)	73
*(10) 6228 – 6882	(28)	— 35	(44)	168	(68)	0
(11) $4\frac{7}{12}$	(29)	15	(45)	$1.5, \frac{3}{2}, 1\frac{1}{2}$	(69)	7
(12) 1.5, $\frac{3}{2}$, $1\frac{1}{2}$	*(30)	6 ,560,6 78 — 7 ,251, 274	(46)	301	*(70)	493 — 544
(13) 225	(31)	1101	. (47)	30	(71)	26
(14) 3375	(32)	<u> </u>	(48)	9	(72)	2
(15) 134	(33)	183	(49)	6.4, $\frac{32}{5}$, $6\frac{2}{5}$	(73)	4
(16) 16	(34)	240	*(50)	570 - 628	(74)	<u>2</u> 3
(17) 64			(51)	1	(75)	2
(18) 63			(52)	7290	(76)	— 10
			(53)	$\frac{7}{3}$, $2\frac{1}{3}$	(77)	872
			(54)	7	(78)	15
			(55)	1 3	(79)	<u>19</u> 25
			(56)	6	*(80)	7569 — 8365
	· ·		(57)	24		·
		3	(58)	1.5, $\frac{3}{2}$, $1\frac{1}{2}$		•

2009-10 TMSCA High School State Meet

(1) 1002 - 2010 =	
(2) 2010 ÷ 5 =	
(3) 2010 × 11 =	
(4) 1212 + 2121 =	
(5) $\frac{4}{7} \times \frac{21}{22} = $	
(6) $4 \div 1\frac{3}{5} = $	(mixed number)
(7) $\frac{5}{16} =$	% (decimal)
(8) $55 + (44 - 33) \times 22 \div 11 =$	
(9) $27^2 =$	
*(10) 11 2358 + 1321 =	
(11) 42 × 24 =	·
(12) 13 ³ =	
(13) 2010 ÷ 9 =	(mixed number)
(14) 132 is 200 % of	· · ·
(15) $\frac{3}{4}$ of a peck is equivalent to	quarts
(16) Which is larger, 1 ⁵ / ₁₂ or 1.45?	
(17) MI + DV - CX =	(Arabic Number)
(18) The largest prime divisor of 3	55 is

(19) $4 + 9 + 14 + 19 + + 49 =$
*(20) 682 × 484 =
(21) 3.2131313 = (mixed number)
(22) Which of the following is both a happy number and an evil number, 7, 10, or 13?
(23) 242 × 101 =
(24) $2^6 - 3 + 4^3 = 5^k$. k=
(25) If $f(x) = 4x^2 + 28x + 49$ then $f(19)$ is
(26) $11\frac{4}{7} \times 11\frac{3}{7} = $ (mixed number)
(27) 68 base ten is equivalent to base 4
(28) The sum of three consecutive integers is 144. The smallest of the three is
(29) $ 1-3 -2\cdot 3 +3\cdot -1 =$
*(30) $\sqrt{870} \times 295 =$
(31) $(14 \times 22 - 30) \div 8$ has a remainder of
(32) 15 feet per second = yards per minute
(33) A rectangle's perimeter is 48 cm. If its width is $\frac{1}{3}$ of its length, then the area is sq. cm
$(34) \ \frac{8!}{5! \ 4!} = _$
(35) Let $5x - 3 = 1$ then $4x + 2 =$

- (36) The set {M, A, T, H} has _____ improper subsets
- (37) How many positive integral divisors does 88 have?
- (38) $\sqrt{175} + \sqrt{112} = \sqrt{x}$. Find x.
- (39) 10111₂ = ______8
- *(40) $16 \times 48 + 24 \times 52 =$
- $(41) \quad \frac{57}{71} \frac{7}{9} = _$
- (42) The sum of the product of the roots taken three at a time of $x^4 2x^3 13x^2 + 14x = -24$ is _____
- (43) If $x + y = \frac{1}{3}$ and $xy = \frac{1}{9}$ then $x^3 + y^3 =$ _____
- (44) If P is 75% of Q and R is $1\frac{1}{2}$ Q's, then P is what percent less than R? _____%
- (45) 312 × 213 =____
- (46) ..., x, 0.6, 1.1, 1.6, y, ... is an arithmetic sequence. Find the value of x + y. _____
- (47) 60 °F = _____ °C
- (48) The greatest integer x such that $4-3x \ge 2x+5$ is _____
- (49) Find the geometric mean of 1, 2, and 32.
- *(50) $222 \times 27.1 \times \frac{7}{12} =$ _____
- (51) The line of symmetry of the parabola $y = x^2 + 6x + 13$ is x =_____
- (52) $10^2 9^2 + 8^2 7^2 + ... + 2^2 1^2 =$ _____
- (53) The largest number of regions created by 11 intersecting lines that are coplanar is _____
- (54) $134_5 \div 4_5 = 5$
- (55) $\sin\left(\frac{\pi}{3}\right) \times \sec\left(\frac{\pi}{6}\right) =$ _____
- (56) How much time has passed from 7:15 a.m. to 3:45 p.m. the same day? _____ hours
- (57) The 18th term of 3, 8, 13, 18, ... is _____
- (58) (3-8i)(3-8i) = a + bi. Find a b.

(59) $\frac{5\pi}{8}$ radians = ______ degrees

$$\frac{1}{2}(60) \left(\frac{\sqrt{5}+1}{2}\right)^2 (e)^2 (\pi)^2 = -\frac{1}{2}$$

- (61) The probability of winning tournament A is $\frac{7}{12}$. The odds of losing tournament A is _____
- $(62) _{6}P_{3} + _{6}C_{3} = _$
- (63) M varies inversely with N² and M = 3 when N = 5. If N = 10 then M =
- (64) The sum of the coefficients of the xy^2 term and x^2y term in the expansion of $(x 3y)^3$ is _____
- (65) Let $K = \sqrt{2} + \sqrt{3} + \sqrt{5}$. Truncate K to one decimal place. _____ (decimal)
- (66) $(456_7 + 654_7) \div 6$ has a remainder of _____
- (67) If A = 1.2B and A = 2C then B =____% of C.
- (68) $\sqrt{19044} =$ _____
- (69) $\log 16 \div \log 4 \times \log 100 =$
- *(70) The surface area of a sphere with a diameter of 9 inches is _________ sq. inches
- (71) The sum of the first 10 terms of the Fibonacci characteristic sequence 2,5,7,12,19,... is
- (72) If $f(x) = \frac{3x}{2x+1}$, then $f^{-1}(-3) =$ _____
- (73) If det $\begin{vmatrix} 4 & 2 \\ 3x & -5x \end{vmatrix} = 1$, then x = _____
- (74) $\lim_{x \to 2} \left(\frac{x-2}{x^2+x-6} \right) =$ _____

(75) If
$$f(x) = x^2 + x + 1$$
, find $f(f(1))$.

- (76) If $f(x) = \frac{5x+3}{x-1}$, then f'(2) =_____
- (77) The minimum value of $y = 3x^2 + 4x$ is _____
- (78) $\int_{-1}^{2} (1-x) dx =$
- (79) The slope of the line tangent to $x^2 + y^2 = 4$ at y = 2 is ______

*(80) 898 miles/hour = _____ feet/second

009-10 TMSCA High School State Meet Number Sense - Answer Key number) x - y means an integer between x and y inclusive IOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal

(1) - 1008	(19) 265	(36) 1	(59) 112.5, $\frac{225}{2}$, $112\frac{1}{2}$
(2) 402	*(20) 313584 – 346592	(37) 8	*(60) 182 - 200
(3) 22110	(21) $3\frac{211}{990}$	(38) 567	(61) $\frac{5}{7}$
(4) 3333	(22) 10	(39) 27	(62) 140
(5) $\frac{6}{11}$	(23) 24442	*(40) 1916 - 2116	(63) .75, $\frac{3}{4}$
(6) $2\frac{1}{2}$	(24) 3	(41) $\frac{16}{639}$	(64) 18
(7) 31.25	(25) 2025	(42) - 14	(65) 5.3
(8) 77	(26) $132\frac{12}{49}$	$(43) - \frac{2}{27}$	(66) 0
(9) 729	(27) 1010	(44) 50	(67) $\frac{500}{2}$, 166 $\frac{2}{3}$
*(10) — 1077 — — 974	(28) 47	(45) 66456	(68) 138
(11) 1008	(29) - 1	(46) 2.2, $\frac{11}{5}$, $2\frac{1}{5}$	(69) 4
(12) 2197	*(30) 8267 - 9136	$(47) \frac{140}{9}, 15\frac{5}{9}$	*(70) 242 267
(13) $223\frac{1}{3}$	(31) 6	(48) -1	(71) 550
(14) 66	(32) 300	(49) 4	$(72) - \frac{1}{3}$
(15) 6	(33) 108	*(50) 3334 3684	$(73) - \frac{1}{2}$
(16) 1.45, $\frac{29}{20}$, $1\frac{9}{20}$	(34) 14	(51) — 3	
(17) 1396	$(35) \ 5.2, \frac{26}{5}, 5\frac{1}{5}$	(52) 55	(74) .2, $\frac{1}{5}$
(18) 71		(53) 67	(75) 13
		(54) 21	(76) - 8
		(55) 1	$(77) - \frac{1}{3}$
	· ·	(56) 8.5, $\frac{17}{2}$, $8\frac{1}{2}$	(78) 1.5, $\frac{3}{2}$, $1\frac{1}{2}$
		(57) 88	(79) 0
		(58) — 7	*(80) 1252 - 1382

The University Interscholastic League Number Sense Test • HS District 1 • 2010

		Final		
Contestant's Number		2nd		
		1st		
Read directions carefully	DO NOT UNFOLD THIS SHEET		Score	Initials
before beginning test	UNTIL TOLD TO BEGIN			

Directions: Do not turn this page until the person conducting this test gives the signal to begin. This is a ten-minute test. There are 80 problems. Solve accurately and quickly as many as you can in the order in which they appear. ALL PROBLEMS ARE TO BE SOLVED MENTALLY. Make no calculations with paper and pencil. Write only the answer in the space provided at the end of each problem. Problems marked with a (*) require approximate integral answers; any answer to a starred problem that is within five percent of the exact answer will be scored correct; all other problems require exact answers.

The person conducting this contest should explain these directions to the contestants.

(1)	2210 - 1030 =
(2)	$\frac{7}{10} \times \frac{5}{14} =$
(3)	326 × 11 =
(4)	$\frac{5}{24} \div \frac{3}{4} = $
(5)	36 % = (proper fraction)
(6)	$(2+3) - 5 \div 6 \times 4 =$
(7)	17 ² =
(8)	65 × 56 =
(9)	9 ³ =
*(10)	3221 + 4021 - 5112 =
(11)	$4\frac{5}{6} - 2\frac{7}{12} = $ (mixed number)
(12)	The GCD of 52 and 78 is =
(13)	225 is 150 % of
(14)	CXI + XLIV = (Arabic Number)
(15)	3 ³ / ₄ pecks is equivalent to quarts
(16)	The number of positive prime integers that divide 76 is?

- (17) Which is larger, $-2\frac{2}{5}$ or -2.35.
- (18) The arithmetic mean of 10, 15, 12, 13, 13, 12, 10, & 14 is = _____ (decimal)
- (19) 7 + 12 + 17 + 22 + ... + 47 =_____
- *(20) $\sqrt{8679} =$ _____
- (21) 0.120120120... = _____ (proper fraction)
- (22) Which of the following is both a composite and an abundant number, 42, 43, or 44?
- (23) Truncate $(\sqrt{2})(\sqrt{3})$ to the tenths place.
- (24) A number squared gives the same results as half of it cubed. What is the number?
- (25) If $f(x) = x^2 + 8x + 16$ then f(26) is _____
- $(26) \ 0.08333... + 0.41666... 0.58333... =$
- $(27) |-1-1| | 2-3| 5|8| = _$
- (28) The product of the roots of $3x^2 + 8x = 3$ is _____
- (29) 223355k is divisible by 9. Find k. _____
- *(30) $6543 \times 876 =$
- (31) The diagonal of a square is $3\sqrt{5}$ inches. The area of this square is ______ square inches

- (32) Find k if $59^2 47^2 = 24k$. k =_____
- $(33) \ 241_6 43_6 = ____6$
- $(34) 5 \times 5! + 35 \times 4! =$
- (35) $11\frac{7}{9} \times 11\frac{2}{9} =$ _____ (mixed number)
- (36) $(9 + 15 \times 21) \div 8$ has a remainder of
- (37) The largest number of regions created by nine intersecting lines is
- (38) $\sqrt{108} \sqrt{48} = \sqrt{x}$. Find x.
- (39) Set A has 10 elements, B has 7 elements, and $A \cup B$ has 15 elements. $A \cap B$ has elements
- *(40) 79.4 $\div \frac{1}{9} \times 133\frac{1}{3}\% =$
- (41) $12 \times 39 + 13 \times 34 =$
- (42) The x-intercept of the line going through (1, 3) and (3, 5) is (x, y). x = _____
- (43) If $x + y = \frac{1}{3}$ and xy = 3 then $x^3 + y^3 =$ _____
- (44) 221 × 133 = _____
- (45) The greatest integer x such that 3x + 8 < 4is ______
- (46) The sum of the product of the roots taken two at a time of $x^4 + 2x^3 - 3x^2 - 4x = -4$ is
- (47) Find the geometric mean of 4, 6, and 9.
- $(48) \ 111_2 + 222_3 + 333_4 = _ 10$
- (49) 77 °F = _____ °C
- *(50) 248248 \div 121 =
- (51) (3 + 4i)(5 6i) = (a + bi). Find a + b.
- (52) Let $\log_8(x^2) = \frac{2}{3}$, where x > 0. x =
- $(53) \ 1 2^2 + 3^2 4^2 + 5^2 \dots 10^2 = \dots$
- $(54) \ _5C_3 _4P_2 =$
- $(55) \sqrt{15129} =$
- (56) If two dice are rolled, the odds that the sum of the faces is 2, 3, or 12 is _____

- (57) $\sin(\frac{5\pi}{4}) \times \cos(\frac{5\pi}{4}) =$ _____
- (58) The number of distinct diagonals of a convex decagon is _____
- (59) How much time has passed from 8:20 a.m. to 3:50 p.m. the same day? _____ hours

*(60) $2.72^{(e)} \times 3.14^{(\pi)} \times 1.62^{(\phi)} =$ _____ (61) 480 miles/hour = _____ feet/second

- (62) $\begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} \times \begin{vmatrix} 2 & 1 \\ 3 & 4 \end{vmatrix} = \begin{vmatrix} a & c \\ b & d \end{vmatrix}$. Find a d.
- (63) $(123 + 321) \div 4$ has a remainder of
- (64) If sec x = 2 then the value of $tan^2 x$ is
- (65) The greatest integer function g(x) = [2x 7]has a value of _____ for $g(\sqrt{7})$
- $(66) \log 125 \log 25 + \log 5 = \log _$
- (67) The simplified coefficient of the x^2y^3 term in the expansion of (2x — y)⁵ is _____
- (68) $(2!)(3!)(4!) \cong x \pmod{8}$ and $0 \le x \le 7$. x =_____
- (69) How many ways can Huey, Dewey, and Louie sit in a row of four chairs? _____
- *(70) The surface area of a right cylinder with a radius of 3" and a height of 4" is ______ sq. in.
 - (71) Given $3192 \div 11\frac{1}{5} = 285$. Find $3192 \div 56$.
 - (72) F(x) = log(3x 2) has an asymptote at x =
- (73) If $f(x) = \sqrt{3+4x}$, where x, $f(x) \in \{\text{Reals}\}$ then the range of f(x) is $\{f(x) | f(x) \ge ____\}$
- (74) If $\sin \theta = .8$ then $\cos \theta =$ _____ in QIV

(75)
$$\sum_{0}^{2} (1-3x) =$$

- (76) $\int_{0}^{2} (x^{3}) dx =$ _____
- (77) The minimum value of $y = x^2 + 2x 3$ is
- (78) 3434 × 1001 =
- (79) Change .34 base 5, to a base ten fraction.

*(80) 3.75 square miles = _____ acres

University Interscholastic League - Number Sense Answer Key HS • District 1 • 2010 *number) x - y means an integer between x and y inclusive NOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal

(1) 1180	$(17) - 2.35, -\frac{47}{20},$	(32) 53	(57) .5, $\frac{1}{2}$
(2) .25, $\frac{1}{4}$	$-2\frac{7}{20}$	(33) 154	(58) 35
(3) 3586	(18) 12.375	(34) 1440	(59) 7.5, $\frac{15}{2}$, $7\frac{1}{2}$
(4) 5	(19) 243	(35) 132 $\frac{14}{81}$	*(60) 1146 1266
(*) 18 (*) 9	*(20) 89 - 97	(36) 4	(61) 704
$(5) \frac{1}{25}$	(21) $\frac{40}{333}$	(37) 46	(62) -9
(6) $\frac{5}{3}, 1\frac{2}{3}$	(22) 42	(38) 12	(63) 0
(7) 289	(23) 2.4, $\frac{12}{5}$, $2\frac{2}{5}$	(39) 2	(64) 3
(8) 3640	(24) 8	*(40) 906 1000	(65) -2
(9) 729	(25) 900	(41) 910	(66) 25
*(10) 2024 — 2236	$(26) - \frac{1}{12},$	(42) - 2	(67) — 40
(11) $2\frac{1}{4}$	(27) - 39	$(43) - \frac{80}{27}, -2\frac{26}{27}$	(68) 0
(12) 26	(28) - 1	(44) 29393	(69) 24
(13) 150	(29) 7	(45) -2	*(70) 126 138
(14) 155	*(30) 5.445.085	(46) -3	(71) 57
(15) 30	6,018,251	(47) 6	$(72) \frac{2}{3}$
(16) 2	$(31) \ 22.5, \frac{45}{2}, 22\frac{1}{2}$	(48) 96	(73) 0
		(49) 25	$(74) 6^{\frac{3}{2}}$
		*(50) 1950 - 2154	(75) 6
		(51) 41	(75) - 0
		(52) 2	(76) 4
			(77) -4

- (78) 3,437,434
- (54) 2 (79) $\frac{19}{25}$
- (55) 123 *(80) 2280 - 2520
- (56) $\frac{1}{8}$

(53) - 55

The University Interscholastic League Number Sense Test • HS District 2 • 2010

		Final		
Contestant's Number		2nd		
		1st		
Read directions carefully before beginning test	DO NOT UNFOLD THIS SHEET UNTIL TOLD TO BEGIN		Score	Initials

Directions: Do not turn this page until the person conducting this test gives the signal to begin. This is a ten-minute test. There are 80 problems. Solve accurately and quickly as many as you can in the order in which they appear. ALL PROBLEMS ARE TO BE SOLVED MENTALLY. Make no calculations with paper and pencil. Write only the answer in the space provided at the end of each problem. Problems marked with a (*) require approximate integral answers; any answer to a starred problem that is within five percent of the exact answer will be scored correct; all other problems require exact answers.

The person conducting this contest should explain these directions to the contestants.

STOP -- WAIT FOR SIGNAL!

(1)	2010 + 201 + 20 =	$(18) 2 + 5 + 8 + \dots + 29 = _$
(2)	\$20.10 ÷ 5 =	(19) $3\frac{3}{5} - 1\frac{2}{3} = $ (mixed number)
(3)	112 - 358 =	*(20) $\sqrt{359} \times \sqrt{445} =$
(4)	$\frac{8}{15} \times \frac{9}{10} =$	(21) $69 \times \frac{69}{73} = $ (mixed number)
(5)	$1\frac{3}{8} \div .0625 = $	(22) Which of the following is an odious number, 63, 31, or 15?
(6)	2134711 ÷ 9 has a remainder of	03, 51, 01 15.
(7)	$4 \div (5 + 6 - 7) \times 8 =$	(23) $232 \times 18 =$ (24) $3^4 + 2^5 - 4^3 = k^2$, k =
(8)	$44 \div 15 + 76 \div 15 =$	
(9)	$\frac{7}{16} = $ % (decimal)	 (25) The 6th hexagonal number is (26) 80 has positive integral divisors
*(10)	7777 - 888 + 99 =	(27) 105 base ten is equivalent to base 5
(11)	729 ÷ 27 =	(28) The set {s,q,u,a,r,e} has 4-elements subsets
(12)	9 is what % of 180?%	(29) 2583677k is divisible by 11. Find k > 0
(13)	14 ³ =	*(30) 18 × 54 + 27 × 36 =
(14)	The LCM of 52 and 78 is =	(31) $245_9 \div 7_9 = $ 9
(15)	160 acres is equivalent to mile(s)	(32) 1+5+6+11+17++73+118=
(16)	The sum of the proper divisors of 80 is	$(33) \frac{9!}{7! \cdot 2!} =$
(17)	$\left\{ x \mid 40 < x < 50, \ x \in \{\text{Composites}\} \right\}$ contains how many elements?	(34) Given 9248 ÷ 34 = 272. Find 9248 ÷ $8\frac{1}{2}$.

- (35) $12\frac{12}{49} \div 3\frac{3}{7} =$ _____(mixed number)
- (36) If 4 + x = 3, then 3x + 4 =_____
- (37) Rectangle A is 8" by 10" and rectangle B is 5" by 6". The ratio of B's area to A's area is _____
- (38) Round $\sqrt{8} + \sqrt{7}$ to a whole number.
- *(40) $333 \times 23.8 \times \frac{5}{14} =$ _____
- $(41) \ (34)^2 (21)(55) = _$
- (42) $15 \,^{\circ}\text{C} = __{\circ}\text{F}$
- (43) If x + y = -2 and xy = 5 then $x^3 + y^3 =$ _____
- (44) If P is 30% of Q and Q is $\frac{1}{4}$ of R, then P is what percent of R? _____%
- (45) The y-intercept of 6x 2y = 8 is (x,y). y =_____
- (46) The harmonic mean of 2 and 8 is _____
- (47) The sum of the product of the roots taken two at a time is $x^3 + x^2 - 5x + 3 = 0$ is _____
- $(48) 1 4 + 9 16 + 25 36 + \dots 100 = _$
- $(49) \ \frac{59}{67} \frac{10}{11} = _$
- *(50) 300 log 300 = _____
- (51) 0.444... ÷ 0.161616... = _____
- (52) The legs of a right \triangle are 5 and 12. The length of the altitude to the hypotenuse is _____
- (53) (i)³⁶ = _____
- (54) $\log_6 \sqrt{216} =$ _____
- (55) A convex polygon has 27 distinct diagonals. How many sides does it have? _____
- (56) The next term of the geometric sequence -2.5, 1, $-\frac{2}{5}$, ... is _____ (decimal)
- (57) $(44_7 + 55_7) \div 6$ has a remainder of _____

- (58) 225 degrees = $\frac{\pi}{k}$ radians. Find k.
- (59) $U = \{x \mid -8 < x < 6, x \in \{\text{Odd Integers}\}\}$ is the universal set and $\{-3, 3\} \subset U$. How many elements are in $\{-3, 3\}'$?

*(60)
$$\mathcal{C}^{(3.14)} \times \pi^{(2.72)} \times \frac{\sqrt{5}+1}{2} =$$

(61) $(\cos \frac{\pi}{6})(\cos \frac{\pi}{3}) - (\sin \frac{\pi}{6})(\sin \frac{\pi}{3}) =$ _____

- (62) How much time has passed from 10:24 a.m. to 1:15 p.m. the same day? minutes
- (63) f(x) = 4x 1 and g(x) = 2 + 3x. $g(f(\frac{1}{2})) =$ _____
- (64) The sum of the coefficients of the xy^2 and the x^2y terms in the expansion of $(x y)^3$ is
- (65) If $f(x) = \frac{2+3x}{4}$, then $f^{-1}(-1) =$ _____
- (66) The sum of the first 10 terms of the Fibonacci characteristic sequence 2,5,7,12,19,... is _____
- $(67) \ 1(0!) + 2(1!) + 3(2!) + 4(3!) + 5(4!) = _$
- (68) If $Z \div 101 = 212$, then Z =_____
- (69) M varies directly with N^2 and M = 18 when N = 3. If N = 6 then M =
- *(70) 388 miles/hour = _____ feet/second
- (71) If $f(x) = \frac{4}{5x+6}$, then $f^{-1}(-1) =$ _____
- (72) $f(x) = \frac{x^3 3x^2}{x^2 1}$ has how many asymptotes? _____
- (73) $\sum_{1}^{5} (-x)^{x} =$ _____
- (74) $\sqrt{7569} =$ _____
- (75) The least value of k such that ${}_{8}C_{k} = 56$ is _____
- (76) If $f(x) = 2x^3 3x^2 + 4x$, then f''(1) =_____
- (77) $\int_{1}^{3} (2x-1) dx =$ _____
- (78) The minimum value of $y = x^2 + 4x$ is at y =____
- (79) 234 × 211 =
- *(80) 624 miles is equivalent to _____ rods

University Interscholastic League - Number Sense Answer Key HS • District 2 • 2010 *number) x - y means an integer between x and y inclusive NOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal

8

9

(1)	2231 (1	8) 155	(35) $3\frac{4}{7}$	(58)	$.8, \frac{4}{5}$
(2)	\$ 4.02 (1	9) $1\frac{14}{15}$	(36) 1	(59)	5
(3)	- 246 *(2	0) 380 - 419	(37) .375, $\frac{3}{8}$	*(60)	800 — 883
(4)	$.48, \frac{12}{25}$ (2	1) $65\frac{16}{73}$	(38) 5	(61)	0
(5)	22 (2	2) 31	(39) 20	(62)	171
(6)	1 (2	3) 4176	*(40) 2689 - 3972	(63)	5
(7)	8 (2	4) 7	(41) 1	(64)	0
(8)	8 (2	5) 66	(42) 59	(65)	<u> </u>
(9)	43.75 (2	6) 10	(43) 22	(66)	550
*(10)	6639 — 7337 (2	27) 410	(44) 7.5, $\frac{15}{2}$, $7\frac{1}{2}$	(67)	153
(11)	27 (2	28) 15	(45) -4	(68)	21412
(12)	5 (2	29) 8	(46) 3.2, $\frac{16}{5}$, $3\frac{1}{5}$	(69)	72
(13)	*(:	30) 1847 — 2041	(47) -5	*(70)	541 — 597
(13)	156 (3	31) 32	(48) - 55	(71)	-2
(14)	25 l (.	32) 304	$(49) - \frac{21}{2}$	(72)	3
(15)	$.25, \frac{1}{4}$ (3	33) 36	(() 737 *(50) 706 780	(73)	24
(16)	106 (.	34) 1088	^(50) /00 - /80	(74)	87
(17)	6		(51) 2.75, $\frac{11}{4}$, $2\frac{3}{4}$	(75)	3
			$(52) \ \frac{60}{13}, 4\frac{8}{13}$	(76)	6

(53) 1

(55) 9

(56) .16

(57) 0

(54) 1.5, $\frac{3}{2}$, $1\frac{1}{2}$

(77) 6

(78) -4

(79) 49374

209,664

The University Interscholastic League Number Sense Test • HS Regional • 2010

		Final		
Contestant's Number <u>4A - 56</u>		2nd	<u> </u>	
		1st		
Read directions carefully before beginning test	DO NOT UNFOLD THIS SHEET UNTIL TOLD TO BEGIN		Score	Initials

Directions: Do not turn this page until the person conducting this test gives the signal to begin. This is a ten-minute test. There are 80 problems. Solve accurately and quickly as many as you can in the order in which they appear. ALL PROBLEMS ARE TO BE SOLVED MENTALLY. Make no calculations with paper and pencil. Write only the answer in the space provided at the end of each problem. Problems marked with a (*) require approximate integral answers; any answer to a starred problem that is within five percent of the exact answer will be scored correct; all other problems require exact answers.

The person conducting this contest should explain these directions to the contestants.

(1) 2010 - 424 + 508 =	(19) $\{x \mid 20 < x < 40, x \in \{Primes\}\}$ contains
(2) $\frac{8}{25} \times \frac{15}{16} =$	how many elements?
(3) $$201.00 \div 2.5 = $$	*(20) $\sqrt{94835} =$
(4) $2\frac{1}{3} + 3\frac{1}{5} = $ (mixed number)	(21) 0.4333 = (proper fraction)
(5) 48 % = (proper fraction)	(22) 369 × 101 =
(6) 2010 ÷ 9 has a remainder of	(23) Round $\sqrt{5} \div \sqrt{4}$ to the tenths place.
(7) $1 - 1 \div 2 + 3 \times 5 =$	(24) The sum of x and four gives the same results as twice x less eight. What is the number?
(8) $31^2 =$	(25) If $f(x) = x^3 + 9x^2 + 27x + 27$ then $f(9)$ is
(9) 72 × 27 =	(26) The 11 th hexagonal number is
*(10) 11235 + 2134 - 162 =	(27) $ -1+2 - 3+4 -5+ -6 =$
(11) 37.5% of 320 is	(28) The sum of the product of the roots taken two at a time of $4x^4 - 37x^2 + 9x = 0$ is
(12) $GCD(15, 48) \times LCM(15, 48) =$ (13) $8 \times 18 \times 12 =$	(29) 14253K is divisible by 6, but not by 5. K is
(14) 1 + 5 + 9 + 13 + + 33 =	*(30) 24 × 12 + 36 × 72 =
(15) 2.25 pecks is equivalent to quarts	(31) The multiplicative inverse of 2.0625 is
(16) The median of 85, 78, 92, 88, 90, & 76 is =	(32) Find k if $87^2 - 73^2 = 80k$. k =
(17) 12.34 56.7 = (decimal)	$(33) \ 222_8 - 44_8 = \8$
(18) $DLV + CXI =$ (Arabic Number)	$(34) \ 35 \times 4! + 3 \times 6! =$

- (35) $9\frac{8}{11} \times 9\frac{3}{11} =$ (mixed number)
- (36) $(13 \times 16 19) \div 11$ has a remainder of _____
- (37) Given 5940 \div 44 = 135. Find 5940 \div 5 $\frac{1}{2}$.
- (38) $\sqrt{45} + \sqrt{180} = \sqrt{x}$. Find x.
- (39) Set A has 12 elements, B has 14 elements, and $A \cap B$ has 5 elements. $A \cup B$ has _____ elements
- *(40) 727272 ÷ 111 = _____
- (41) The legs of a right \triangle are 9 and 40. The length of the altitude to the hypotenuse is _____
- (42) If P is 40% of Q and P is $\frac{3}{5}$ of R then Q is what percent greater than R? _____%
- (43) If $x y = \frac{1}{2}$ and xy = 3 then $x^3 y^3 =$ _____
- (44) 113 × 211 = _____
- (45) The greatest integer x such that $4 3x \ge 5$ is _____
- $(46) \ \frac{2}{3} \frac{101}{149} = _$
- (47) The arithmetic mean of 0.4, 1.5, 2.6, 3.7, and 4.8 is _____(decimal)
- (48) ..., x, 0.5, 1, 2, y, ... is a geometric sequence. Find the value of x + y.
- (49) 11 °C = _____°F
- *(50) $452 \times 25.4 \times \frac{2}{45} =$ _____
- $(51) \ (144)^2 (89)(233) =$
- (52) The number of distinct diagonals of a convex dodecagon is _____
- $(53) \ \sqrt{207936} = _$
- (54) ${}_{5}C_{2} + {}_{4}P_{3} =$
- (55) How much time has passed from 5:50 a.m. to 11:10 p.m. the same day? _____ hours
- $(56) (67_9 + 78_9) \div 8$ has a remainder of _____
- (57) Let $\log_{16}(x-4) = \frac{3}{4}$. x =_____

- (58) $8^2 7^2 + 6^2 5^2 + 4^2 \dots 1^2 =$
- (59) The largest number of regions created by 12 intersecting lines that are coplanar is
- *(60) $(1.62)(2.72)(3.14)(\phi)(e)(\pi) =$ _____
- (61) The slope of the line containing the points (-1, 5) and (2, -3) is _____
- (62) $(\sin \frac{\pi}{6})(\cos \frac{\pi}{3}) (\sin \frac{\pi}{3})(\cos \frac{\pi}{6}) =$ _____
- (63) $\begin{vmatrix} 7 & 3 \\ 5 & 1 \end{vmatrix} \times \begin{vmatrix} 2 & 6 \\ 4 & 8 \end{vmatrix} = \begin{vmatrix} a & c \\ b & d \end{vmatrix}$. Find b + c. _____
- (64) The odds of event A happening is $\frac{3}{5}$. The probability of A not happening is _____%
- (65) The greatest integer function g(x) = [3x + 1]has a value of ______ for $g(\sqrt{2})$
- (66) 75 miles/hour = _____ feet/second
- (67) $\log 27 \div \log 3 \times \log 1000 =$ _____
- (68) If $[(2!) + (3!) + (5!)] \cong x \pmod{6}$ and $0 \le x \le 5$, then x =_____
- (69) If $f(x) = \frac{5-3x}{2}$, then $f^{-1}(1) =$ _____
- *(70) 4 rods 3 yards 2 feet = _____ inches
- (71) $1(1!) + 2(2!) + 3(3!) + \dots + 6(6!) =$ _____
- (72) If $f(x) = x^2 x 2$, then f(f(-1)) =_____
- (73) $f(x) = \sqrt{4x 1}$ is a real value function. The domain of f(x) is $\{x | x \in \{\text{Reals}\} \text{ and } x \ge \ldots\}$
- (74) $\sum_{-1}^{2} [(-x)^3 + x] =$ _____
- (75) $\int_{1}^{2} (3-x) dx =$ _____
- (76) The sum of the first 10 terms of the Fibonacci characteristic sequence 4,5,9,14,23,... is _____
- (77) How many ways can Donald and his 3 nephews sit in a row of 5 chairs?
- $(78) \ 0.111... + 0.1666... + 0.333... =$
- (79) Change .55 base 6, to a base ten fraction.
- *(80) 1800 feet = _____ rods

University Interscholastic League - Number Sense Answer Key HS • Regional • 2010 *number) x - y means an integer between x and y inclusive NOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal

(1)	2094 (19)) 4 (35)	$90\frac{24}{121}$ (59)	79
(2)	$.3, \frac{3}{10}$ *(20)) 293 — 323 (36)	2 *(60)	182 - 200
(3)	\$ 80.40 (21)	$\frac{13}{30}$ (37)	1080 (61)	$-\frac{8}{3},-2\frac{2}{3}$
(4)	$5\frac{8}{15}$ (22)	37269 (38)	405 (62)	$5, -\frac{1}{2}$
(5)	$\frac{12}{25}$ (23)	1.1 (39)	21 (63)	80
(6)	3 (24)	*(40)	6225 - 6879 (64)	$62.5, \frac{125}{2}, 62\frac{1}{2}$
(7)	(25) $15.5, \frac{31}{2}, 15\frac{1}{2}$	1728 (41)	$\frac{360}{41}, 8\frac{32}{41}$ (65)	5
(8)	961 (26)	231 (42)	50 (66)	110
(9)	(27)	-5 (43)	$4.625, \frac{37}{8}, 4\frac{5}{8} \tag{67}$	9
*/10)	(28)	$-9.25, -\frac{37}{4}, \tag{44}$	23843 (68)	2
*(10)	12547 - 13867	(45)	-1 (69)	1
(11)	120 (29)	(46)	$-\frac{5}{447}$ *(70)	878 — 970
(12)	1720 (30)	16 (47)	2.6 (71)	5039
(13)	1728 (31)	33 (48)	$-4.25, -\frac{17}{4},$ (72)	- 2
(14)	153 (32) 18 (32)	28	$-4\frac{1}{4} \tag{73}$.25, $\frac{1}{4}$
(15)	18 (33)	(49)	51.8, $\frac{259}{5}$, $51\frac{4}{5}$ (74)	6
(16)	$86.5, \frac{10}{2}, 86\frac{1}{2}$ (34)	*(50)	485 - 535 (75)	$1.5, \frac{3}{2}, 1\frac{1}{2}$
(17)	44.36	(51)	1 (76)	660
(18)	666	(52)	54 (77)	120
		(53)	456 (78)	$\frac{11}{18}$
		(54)	34 (79)	$\frac{35}{36}$
		(55)	$\frac{52}{3}, 17\frac{1}{3}$ *(80)	104 114
		(56)	4	

(57) 12(58) 36